2xy + 2x + y = -6
\(Chox,y>0\)
\(\log_{\sqrt{3}}\left[\dfrac{2x+y}{4x^2+y^2+2xy+2}\right]=2x\left(2x-3\right)+y\left(y-3\right)+2xy\)
Tính \(P_{Max}=\dfrac{6x+2y+1}{2x+y+6}\)
\(log_{\sqrt{3}}\left(2x+y\right)-log_{\sqrt{3}}\left(4x^2+y^2+2xy+2\right)=\left(4x^2+y^2+2xy+2\right)-3\left(2x+y\right)-2\)
\(\Leftrightarrow log_{\sqrt{3}}\left(2x+y\right)+2+3\left(2x+y\right)=log_{\sqrt{3}}\left(4x^2+y^2+2xy+2\right)+\left(4x^2+y^2+2xy+2\right)\)
\(\Leftrightarrow log_{\sqrt{3}}\left(6x+3y\right)+\left(6x+3y\right)=log_{\sqrt{3}}\left(4x^2+y^2+2xy+2\right)+\left(4x^2+y^2+2xy+2\right)\)
Xét hàm \(f\left(t\right)=log_{\sqrt{3}}t+t\) với \(t>0\)
\(f'\left(t\right)=\dfrac{1}{t.ln\sqrt{3}}+1>0\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow6x+3y=4x^2+y^2+2xy+2\)
\(\Leftrightarrow4x+y=\left(x+y-1\right)^2+1+3\left(x^2+1\right)-3\ge2\left(x+y-1\right)+6x-3\)
\(\Leftrightarrow4x+y\ge2\left(4x+y\right)-5\)
\(\Leftrightarrow4x+y\le5\)
\(\Rightarrow P=\dfrac{2x+y+6+\left(4x+y-5\right)}{2x+y+6}=1+\dfrac{4x+y-5}{2x+y+6}\le1\)
\(P_{max}=1\) khi \(x=y=1\)
2xy + 2x + y = -6
\(2xy+2x+y=-6\)
\(\Leftrightarrow2xy+2x+y+1=-6+1\)
\(\Leftrightarrow2x\left(y+1\right)+\left(y+1\right)=-5\)
\(\Leftrightarrow\left(2x+1\right)\left(y+1\right)=-5\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+1=1\\y+1=-5\end{matrix}\right.\\\left\{{}\begin{matrix}2x+1=-1\\2x+1=5\end{matrix}\right.\\\left\{{}\begin{matrix}2x+1=-5\\y+1=1\end{matrix}\right.\\\left\{{}\begin{matrix}2x+1=5\\y+1=-1\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=-6\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3\\y=0\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\end{matrix}\right.\)
Vậy ..
2x(y+1)+(y+1)=-6+1=-5
=> (2x+1)(y+1)=-5
=> 2x+1 va y+1 ∈U(-5)=(1,5,-1,-5)
den day ban tu thay vao tim x,y nha
tìm số nguyên x,y biết
2xy-6=4x-y
x-2xy+y=0
x^2*y+2x^2+y=3
a)ta có :2xy-6=4x-y => 2xy-6-4x+y=0 => 2*(2xy-6-4x+y)=2*0 =>4xy-12-8x+2y=0 => 2x2y-4-8-8x+2y=0 => 2x2y-4-8x+2y=8 =>(2x2y+2y)-(8x+4)=8 =>2y(2x+1)-4(2x+1)=8 => (2y-4)(2x+1)=8 Ta có bảng sau :
2y-4 | 1 | 8 | 2 | 4 | -1 | -8 | -2 | -4 |
2x+1 | 8 | 1 | 4 | 2 | -8 | -1 | -4 | -2 |
y(yϵ\(ℤ\)) | 5/2(loại ) | 6(thỏa mãn) | 3(loại) | 4(loại) | 3/2( loại) | -2(thỏa mãn) | 1( loại) | 0(loại ) |
x(xϵ\(ℤ\)) | 7/2(loại) | 0(thỏa mãn) | 3/2( loại) | 1/2( loại) | -9/2( loại) | -1(thỏa mãn) | -5/2( loại) | -3/2( loại) |
Vậy các cặp nghiệm x,y thỏa mãn là (0;6) và (-1;-2)
2xy + 2x - y = 6
ta có:
2xy+2x-y=6
2x(y+1)-y=5+1
2x( y+1)-y-1=5
2x(y+1)-(y+1)=5
(2x-1)(y+1)=5
mà 5=1.5=-1.(-5)
ta có bảng:
2x-1 | 1 | 5 | -1 | -5 |
2x | 2 | 6 | 0 | -4 |
x | 1 | 3 | 0 | -2 |
y+1 | 5 | 1 | -5 | -1 |
y | 4 | 0 | -6 | -2 |
nhận xét | thỏa mãn | thỏa mãn | thỏa mãn | thỏa mãn |
vậy nếu x=1,thì y=4
x=3, y=0
x=0, y=-6
x=-2, y=-2
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
Tìm các cặp số nguyên x,y biết
2xy+2x+y=-6
2xy + 2x + y = - 6
2x . ( y + 1 ) + y = - 6
2x . ( y + 1 ) + ( y + 1 ) = - 5
( y + 1 ) . ( 2x + 1 ) = - 5
=> y + 1 , 2x + 1 \(\in\)Ư ( - 5 ) = { - 5 ; - 1 ; 1 ; 5 }
Lập bảng giá trị tương ứng giá trị x , y :
y + 1 | - 5 | - 1 | 1 | 5 |
y | - 6 | - 2 | 0 | 4 |
2x + 1 | - 1 | - 5 | 5 | 1 |
x | - 1 | - 3 | 3 | 0 |
sao hình đại diện nguyễn đức thắng giống mình quá
\(2xy+2x+y=-6\)
\(2x\left(y+1\right)+y+1=-6+1\)
\(2x\left(y+1\right)+\left(y+1\right)=-5\)
\(\left(y+1\right)\left(2x+1\right)=-5\)
vì \(x,y\in Z\Rightarrow y+1\in Z;2x+1\in Z\)
\(\Rightarrow y+1\in\text{Ư}_{\left(-5\right)};2x+1\in\text{Ư}_{\left(-5\right)}\)
\(\text{Ư}_{\left(-5\right)}=\text{ }\left\{1;-1;5;-5\right\}\)
lập bảng giá trị
\(y+1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(2x+1\) | \(-5\) | \(-1\) | \(5\) | \(1\) |
\(y\) | \(0\) | \(-1\) | \(0\) | \(-6\) |
\(x\) | \(-3\) | \(0\) | \(3\) | \(0\) |
vậy ác cặp số \(\left(y;x\right)\) thỏa mãn là : \(\left(0;-3\right);\left(-1;0\right);\left(0;3\right);\left(-6;0\right)\)
tìm x,y;biết
a. 2x+y-2x=8
b. 4x^2 - 2xy+6x- 3y=6
a. 12x3y – 24x2y2 + 12xy3 b. x2 – 6 x +xy – 6y c. 2x2 + 2xy x – y d. x3– 3x2 + 3x – 1 e. 3x2 – 3y2 – 12x – 12y f. x2 – 2xy – x2 + 4y2
| g. x2 + 2x + 1 – 16 h.x2 – 2x – 4y2 + 1 i. x2 – 2x –3 j. x2 + 4x –12 k. x2 – 8 x – 9 l. x2 + x – 6
|
a.
$12x^3y-24x^2y^2+12xy^3=12xy(x^2-2xy+y^2)=12xy(x-y)^2$
b.
$x^2-6x+xy-6y=(x^2+xy)-(6x+6y)=x(x+y)-6(x+y)=(x-6)(x+y)$
c.
$2x^2+2xy-x-y=2x(x+y)-(x+y)=(x+y)(2x-1)$
d.
$x^3-3x^2+3x-1=(x-1)^3$
e.
$3x^2-3y^2-12x-12y=(3x^2-3y^2)-(12x+12y)$
$=3(x-y)(x+y)-12(x+y)=(x+y)[3(x-y)-12]=3(x-y)(x-y-4)$
f.
$x^2-2xy-x^2+4y^2=4y^2-2xy=2y(2y-x)$
g.
$x^2+2x+1=(x+1)^2$
h. Không phân tích được thành nhân tử
i.
$x^2-2x-3=(x^2-3x)+(x-3)=x(x-3)+(x-3)=(x+1)(x-3)$
j.
$x^2+4x-12=(x^2-2x)+(6x-12)=x(x-2)+6(x-2)=(x-2)(x+6)$
k.
$x^2-8x-9=(x^2+x)-(9x+9)=x(x+1)-9(x+1)=(x+1)(x-9)$
l.
$x^2+x-6=(x^2+3x)-(2x+6)=x(x+3)-2(x+3)=(x-2)(x+3)$
7) tính a)(2xy+5)(4x^2+5) b)(6xy+4)(2x^2+1) c)(9x^2+4)(3x+5) d)(-2xy+6)(1/2xy+7) e)(4x+1)(2x^2+5x+2) f)(2x^2y+3x)(2x+1) g)(4xy+5x^2y)(2xy+6) h)(-1/2x^2+6)(4xy+5)
a) (2xy+5)(4x^2+5): = 2xy * 4x^2 + 2xy * 5 + 5 * 4x^2 + 5 * 5 = 8x^3y + 10xy + 20x^2 + 25 b) (6xy+4)(2x^2+1): = 6xy * 2x^2 + 6xy * 1 + 4 * 2x^2 + 4 * 1 = 12x^3y + 6xy + 8x^2 + 4 c) (9x^2+4)(3x+5): = 9x^2 * 3x + 9x^2 * 5 + 4 * 3x + 4 * 5 = 27x^3 + 45x^2 + 12x + 20 d) (-2xy+6)(1/2xy+7): = -2xy * 1/2xy + (-2xy) * 7 + 6 * 1/2xy + 6 * 7 = -xy + (-14xy) + 3 + 42 = -15xy + 45 e) (4x+1)(2x^2+5x+2): = 4x * 2x^2 + 4x * 5x + 4x * 2 + 1 * 2x^2 + 1 * 5x + 1 * 2 = 8x^3 + 20x^2 + 8x + 2x^2 + 5x + 2 = 8x^3 + 22x^2 + 13x + 2 f) (2x^2y+3x)(2x+1): = 2x^2y * 2x + 2x^2y * 1 + 3x * 2x + 3x * 1 = 4x^3y + 2x^2y + 6x^2 + 3x g) (4xy+5x^2y)(2xy+6): = 4xy * 2xy + 4xy * 6 + 5x^2y * 2xy + 5x^2y * 6 = 8x^2y^2 + 24xy + 10x^3y + 30x^2y = 8x^2y^2 + 30x^2y + 24xy h) (-1/2x^2+6)(4xy+5): = -1/2x^2 * 4xy + (-1/2x^2) * 5 + 6 * 4xy + 6 * 5 = -2xy + (-5/2x^2) + 24xy + 30 = 22xy + (-5/2x^2) + 30