Tìm m để hệ đã cho có nghiệm (x;y) thoả mãn x2 - y2 đạt giá trị lớn nhất
\(\hept{\begin{cases}x+y=3m+2\\3x-2y=11-m\end{cases}}\)
Cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-2\right)x+my=3\\x-4my=4\end{matrix}\right.\) .Tìm m để hệ đã cho có nghiệm duy nhất.
Để hệ phương trình có nghiệm duy nhất \(\Leftrightarrow\dfrac{m-2}{1}\ne\dfrac{1}{-4}\)
\(\Leftrightarrow-4m+8\ne1\)
\(\Leftrightarrow-4m\ne-7\)
\(\Leftrightarrow m\ne\dfrac{7}{4}\)
Vậy ...
bài tập: cho hệ phương trình \(\left\{{}\begin{matrix}x+my=1\\\\mx+y=1\end{matrix}\right.\) (m là tham số )
a, Giaỉ hệ phương trình khi m=1,m=-1,m=2
b,Tìm m để hệ phương trình đã cho
b.1, có nghiệm duy nhất
b.2,vô nghiệm
b.3,có vô số nghiệm
c,Tìm m để hệ có nghiệm duy nhất \(x+2y=3\)
thankyou
Lời giải:
a) Khi $m=1$ thì HPT trở thành:
\(\left\{\begin{matrix} x+y=1\\ x+y=1\end{matrix}\right.\Leftrightarrow x+y=1\Leftrightarrow y=1-x\)
Khi đó, hệ có nghiệm $(x,y)=(a,1-a)$ với $a$ là số thực bất kỳ.
Khi $m=-1$ thì hệ trở thành:
\(\left\{\begin{matrix} x-y=1\\ -x+y=1\end{matrix}\right.\Rightarrow (x-y)+(-x+y)=2\Leftrightarrow 0=2\) (vô lý)
Vậy HPT vô nghiệm
Khi $m=2$ thì hệ trở thành: \(\left\{\begin{matrix} x+2y=1\\ 2x+y=1\end{matrix}\right.\Rightarrow (x+2y)-(2x+y)=1-1=0\Leftrightarrow y-x=0\Leftrightarrow x=y\)
Thay $x=y$ vào 1 trong 2 PT của hệ thì có: $3x=3y=1\Rightarrow x=y=\frac{1}{3}$Vậy........
b)
PT $(1)\Rightarrow x=1-my$. Thay vào PT $(2)$ có:
$m(1-my)+y=1\Leftrightarrow y(1-m^2)=1-m(*)$
b.1
Để HPT có nghiệm duy nhất thì $(*)$ có nghiệm $y$ duy nhất
Điều này xảy ra khi $1-m^2\neq 0\Leftrightarrow (1-m)(1+m)\neq 0$
$\Leftrightarrow m\neq \pm 1$
b.2 Để HPT vô nghiệm thì $(*)$ vô nghiệm $y$. Điều này xảy ra khi $1-m^2=0$ và $1-m\neq 0$
$\Leftrightarrow m=-1$
b.3 Để HPT vô số nghiệm thì $(*)$ vô số nghiệm $y$. Điều này xảy ra khi $1-m^2=0$ và $1-m=0$
$\Leftrightarrow m=1$
c) Ở b.1 ta có với $m\neq \pm 1$ thì $(*)$ có nghiệm duy nhất $y=\frac{1}{m+1}$
$x=1-my=\frac{1}{m+1}$
Thay vào $x+2y=3$ thì:
$\frac{3}{m+1}=3\Leftrightarrow m=0$
Cho phương trình : mx2 - ( 2m - 1)x + (m-2)=0
1) Giải hệ phương trình vời m=3
2) Tìm m để phương trình đã cho có 2 nghiệm phân biệt x1,x2 thỏa mãn x12 +x22=2018
3) Tìm hệ thức liên hệ giữa các nghiệm ko phụ thuộc vào m
1) Bạn tự giải
2) Ta có: \(\Delta=4m^2-8m+9>0\forall m\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt
Theo Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m-2\end{matrix}\right.\) (*)
Mặt khác: \(x_1^2+x_2^2=2018\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=2018\)
\(\Rightarrow4m^2-4m+1-2m+4=2018\)
\(\Leftrightarrow4m^2-6m-2013=0\) \(\Leftrightarrow...\)
c) Từ (*) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m-1\\2x_1x_2=2m-4\end{matrix}\right.\) \(\Rightarrow x_1+x_2-2x_1x_2=3\)
(Không phụ thuộc vào m)
Cho hệ phuong trình \(\left\{{}\begin{matrix}x+my=4\\x-2y=3\end{matrix}\right.\) .Tìm các giá trị của tham số m để hệ phương trình đã cho :
a) Có nghiệm duy nhất
b) Vô nghiệm :
c) Vô nghiệm:
chỉ có vô nghiệm hoặc vô số nghiệm nhé bạn
vô nghiệm khi x=-2
vô số nghiệm khi x khác -2 nhé
Cho PT: \(x^2-2mx+3m-4=0\)
a, Tìm m để PT đã cho có nghiệm là 2
b, Tìm m để PT đã cho không có nghiệm là 3
c, Tìm m để PT đã cho có 2 nghiệm trái dấu
d, Tìm m để PT đã cho có 2 nghiệm dương
a: Khi x=2 thì pt sẽlà 2^2-4m+3m-4=0
=>-m=0
=>m=0
c: Để PT có hai nghiệm tráo dấu thì 3m-4<0
=>m<4/3
d: Δ=(-2m)^2-4(3m-4)
=4m^2-12m+16
=(2m-3)^2+7>=7
=>Phương trình luôn có hai nghiệm pb
Để PT có 2 nghiệm dương thì 2m>0 và 3m-4>0
=>m>4/3
\(|^{x+my=m^2-m+3}_{mx+y=2m-3}\) tìm m để hệ phương trình đã cho có nghiệm duy nhất (x;y)sao cho x+y=3
=>y=2m-3-mx và \(x+m\left(2m-3-mx\right)=m^2-m+3\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m^2-3m-m^2x+x=m^2-m+3\\y=2m-3-mx\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(1-m^2\right)=m^2-m+3-2m^2+3m=-m^2+2m+3\\y=2m-3-mx\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(m-1\right)\left(m+1\right)=\left(m-3\right)\left(m+1\right)\\y=2m-3-mx\end{matrix}\right.\)
Để phương trình có nghiệm duy nhất thì m<>1; m<>-1
=>\(\left\{{}\begin{matrix}x=\dfrac{m-3}{m-1}\\y=2m-3-\dfrac{m\left(m-3\right)}{m-1}=\dfrac{2m^2-5m+3-m^2+3m}{m-1}=\dfrac{m^2-2m+3}{m-1}\end{matrix}\right.\)
x+y=3
=>\(m^2-2m+3+m-3=3\left(m-1\right)\)
=>m^2-m-3m+3=0
=>m^2-4m+3=0
=>m=1(loại) hoặc m=3(nhận)
Bài 1 Cho hệ phương trình mx−y=1 va x+4.(m+1)y=1. Tìm m nguyên để hệ phương trình có no duy nhất là no nguyên
Bài 2
Bài 2
Cho hệ phương trình x+my=1 và mx−y=−m
a) Chứng minh rằng hệ phương trình đã cho luôn có nghiệm duy nhất với mọi m ( đã xong )
b)Tìm m để hệ phương trình có nghiệm duy nhất (x, y) thỏa mãn x<1 và y<1 (đã xong )
c)tìm hệ thức liên hệ giữa x và y không phụ thuộc vào giá trị của m
Bài 3
Cho hệ phương trình x−my=2−4m và mx+y=3m+1) Giải hệ phương trình khi m = 2 ( xong )
b) Chứng minh hệ luôn có nghiệm với mọi giá trị của m . Giả sử (xo ,yo) là một nghiệm của hệ .Chứng minh đẳng thức x2o+y2o−5(x2o+y2o)+10=0xo2+yo2−5(xo2+yo2)+10=0
Mọi người giúp mk làm câu c bài 2 , 3 với
Cho hệ phương trình: \(\left\{{}\begin{matrix}x+y=2m+1\\2x-y=m+2\end{matrix}\right.\)
Tìm m để hệ đã cho có nghiệm ( x ; y ) sao cho P = 3x2 -y2
đạt giá trị nhỏ nhất
Cho hệ phương trình \(\left\{{}\begin{matrix}2x-y=5\\mx+3y=4\end{matrix}\right.\) (m là tham số). Tìm m để hệ đã cho có nghiệm (x;y) thỏa mãn xy>0.
\(\hept{\begin{cases}y+1=2x+m\\y-3-\left(m+3\right)x=0\end{cases}}\)
a) Giải hệ khi m = 2
b) Tìm m để hệ đã cho có 1 nghiệm duy nhất.
c) Tìm m để hệ đã cho vô nghiệm
d) Tìm m để đường thẳng có phương trình y=(m + 3)x + 3 tạo với các trục tọa độ một tam giác vuông cân
GIÚP VỚI