Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
help me
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 1 2023 lúc 9:16

2M=2^2+2^3+...+2^2019

=>2M-M=2^2+2^3+...+2^2019-2-2^2-...-2^2018

=>M=2^2019-2

Nguyễn Hoàng Anh Thư
Xem chi tiết
Phạm Quang Lộc
26 tháng 7 2023 lúc 11:08

\(S=1+2+...+2^{2017}\)

\(2S=2+2^2+...+2^{2018}\)

\(2S-S=2+2^2+...+2^{2018}-1-2-...-2^{2017}\)

\(S=2^{2018}-1\)

\(S=3+3^2+...+3^{2017}\)

\(3S=3^2+3^3+...+3^{2018}\)

\(3S-S=3^2+3^3+...+3^{2018}-3-3^2-...-3^{2017}\)

\(2S=3^{2018}-3\)

\(S=\dfrac{3^{2018}-3}{2}\)

\(S=4+4^2+...+4^{2017}\)

\(4S=4^2+4^3+...+4^{2018}\)

\(4S-S=4^2+4^3+...+4^{2018}-4-4^2-...-4^{2017}\)

\(3S=4^{2018}-4\)

\(S=\dfrac{4^{2018}-4}{3}\)

\(S=5+5^2+...+5^{2017}\)

\(5S=5^2+5^3+...+5^{2018}\)

\(5S-S=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)

\(4S=5^{2018}-5\)

\(S=\dfrac{5^{2018}-5}{4}\)

a) S=1+2+22+...+22017

=> 2S=2.(1+2+22+...+22017)

=>2S=2+22+23+...+22018

=>S=(2+22+23+ ..+22018) - (1+2+22+ ....+22017 )

=> S =22018-1

 

Help Me
Xem chi tiết
Toru
21 tháng 8 2023 lúc 8:32

loading...

Help Me
Xem chi tiết
Toru
21 tháng 8 2023 lúc 8:28

Ta có: \(A=1+2+2^2+...+2^{2017}\)

\(2.A=2+2^2+2^3+...+2^{2018}\)

\(2A-A=2+2^2+2^3+...+2^{2018}-\left(1+2+2^2+...+2^{2017}\right)\)

\(A=2^{2018}-1\)

\(\Rightarrow A-B=2^{2018}-1-2^{2018}=-1\)

Nghiem Nghiem
Xem chi tiết
Akai Haruma
25 tháng 1 2020 lúc 20:50

Các số từ $2^2,2^3,...,2^{2017}$ đều là số chẵn nên $2^2+2^3+...+2^{2017}$ chẵn.

Mà $1$ lẻ nên $S=1+2^2+2^3+...+2^{2017}$ lẻ nên $S$ không chia hết cho $4$

Khách vãng lai đã xóa
Nguyễn Khánh Linh( Pengu...
Xem chi tiết
Châu Thành Đạt
Xem chi tiết
Thanh Tùng DZ
12 tháng 12 2017 lúc 17:54

Ta có :

\(S=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{2016}+\left(\frac{1}{2}\right)^{2017}\)

\(2S=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2015}+\left(\frac{1}{2}\right)^{2016}\)

\(2S-S=\left[1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2015}+\left(\frac{1}{2}\right)^{2016}\right]-\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{2016}+\left(\frac{1}{2}\right)^{2017}\right]\)

\(S=1-\left(\frac{1}{2}\right)^{2017}< 1\)

Hoàng Thanh Nguyên
Xem chi tiết
Nguyễn Phương Uyên
27 tháng 9 2019 lúc 12:55

\(S=1+2+2^2+...+2^{2017}\)

\(2S=2+2^2+2^3+...+2^{2018}\)

\(S=2^{2018}-1\)

\(S=3+3^2+3^3+...+3^{2017}\)

\(3S=3^2+3^3+3^4+...+3^{2018}\)

\(2S=3^{2018}-1\)

\(S=\frac{3^{2018}-1}{2}\)

2 cái còn lại tương tự

Đồng Tố Hiểu Phong
27 tháng 9 2019 lúc 13:05

S= 1 + 2 + 22 + 23 + ..........+ 22017

2S = 2 + 22 + 23 + 24..........+ 22017 + 22018

Trừ hai vế ta được :

S = 1 + 22018

Vậy S= 1 + 22018

S= 3 + 32 + 33 + ..........+ 32017

3S= 32 + 33 + 34..........+ 32017 + 32018 + 32019 + 32020

Trừ hai vế đi ta được:

S= 3 + 32018 + 32019 + 32020

S= 36057

Các phần sao làm tương tự

vutuannghia
Xem chi tiết
thy123
21 tháng 10 2016 lúc 19:27

S=1018585