cho a+b+c=1
a^2+b^2+c^2=1
a^3+b^3+c^3=1
Tính M=a^20+b^4+c^2018
1) Cho 2 số dương thỏa a10 + b10 = a11 + b11 = a12 + b12. Tính P = a20 + b20
2) Cho \(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{a+c}=2012\). Tính A = \(\dfrac{b^2}{a+b}+\dfrac{c^2}{b+c}+\dfrac{a^2}{a+c}\)
3) Tìm a để x3 + 3ax2 + 3a2x + a3 chia hết cho x2 + 4x + 4
4) Cho a + b = a3 + b3 = -1. Tính (a - b)2018
5) Cho a3 - 3ab2 = 2 và b3 - 3a2b = -11. Tính a2 + b2
Câu 1:
Theo bài ra ta có:
\(a^{12}+b^{12}=a^{12}+a^{11}b-a^{11}b-ab^{11}+ab^{11}+b^{12}\)
\(=a^{11}\left(a+b\right)-ab\left(a^{10}+b^{10}\right)+b^{11}\left(a+b\right)\)
\(=\left(a+b\right)\left(a^{11}+b^{11}\right)-ab\left(a^{10}+b^{10}\right)\)
\(=\left(a+b\right)\left(a^{12}+b^{12}\right)-ab\left(a^{12}+b^{12}\right)\)(gt cho rồi nhé)
\(=\left(a^{12}+b^{12}\right)\left(a+b-ab\right)\)
\(\Rightarrow a+b-ab=1\)
\(\Leftrightarrow a+b-ab-1=0\)
\(\Leftrightarrow a\left(1-b\right)-\left(1-b\right)=0\)
\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\)
\(\)\(\Leftrightarrow\left[{}\begin{matrix}b=1\\a=1\end{matrix}\right.\)
=> a^20 + b^20 = 2
:)) đừng ném đá nhá
1)cho 3 số x, y,z thỏa mãn điều kiện x+y+z=2018 và x^3+y^3+z^3=2018^3. Cmr (x+y+z)^3=x^2017+y^2017+z^2017
2)
tìm các cặp số nguyên (x y) biết x^2-4xy+5y^2-16=0
3)Cho 3 số a,b,c thỏa mãn a+b+c=0 và a^2+b^2+c^2=2018
4)tính giả trị biểu thức A=a^4+b^4+c^4
Bài 1 : Cho M =1+2+2^2+2^3+...+2^2018
Xét số dư của M khi chia cho:
a) 4
b) 3
c) 12
d) 15
Bài 2 : Cho N =1+3+3^2+3^3+...+3^40
Xét số dư của N khi chia cho:
a) 4
b) 12
c) 20
d) 60
ket ban roblox voi minh di
acc minh la duclong444 va viduclong4
cho a+b+c=1; a2+b2+c2=1 và a3+b3+c3=1 .Tính giá trị biểu thức P=a2018+b2018+c2018
1) Gỉai phương trình: (2x^2 +1)^3 + (2-5x)^3 = (2x^2 -5x +3)^3
2) Cho 3 số thực a, b, c đôi một khác nhau thoả mãn : a/b-c +b/c-a + c/a-b =0
CMR: a/(b-c)^2 +b/(c-a)2 +c/(a-c)^2 = 0
3) Tìm giá trị nhỏ nhất của biểu thức: M = x^2 + 5y^2 - 4xy +2x -8y +2018
1/ Đặt \(\left\{{}\begin{matrix}2x^2+1=a\\2-5x=b\end{matrix}\right.\) \(\Rightarrow2x^2-5x+3=a+b\)
Ta được:
\(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow a^3+b^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Leftrightarrow ab\left(a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\b=0\\a+b=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x^2+1=0\left(vn\right)\\2-5x=0\\2x^2-5x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{2}{5}\\x=1\\x=\frac{3}{2}\end{matrix}\right.\)
2/
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
\(\Leftrightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=\frac{b}{a-c}+\frac{c}{b-a}\)
\(\Leftrightarrow\frac{a}{b-c}=\frac{b\left(b-a\right)+c\left(a-c\right)}{\left(a-c\right)\left(b-a\right)}=\frac{b^2-ab+ac-c^2}{\left(a-b\right)\left(c-a\right)}\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}=\frac{b^2-ab+ac-c^2}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\)
Tương tự ta có: \(\frac{b}{\left(c-a\right)^2}=\frac{c^2+ab-bc-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) ; \(\frac{c}{\left(a-b\right)^2}=\frac{a^2+bc-ac-b^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Cộng vế với vế:
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=\frac{b^2-ab+ac-c^2+c^2+ab-bc-a^2+a^2+bc-ca-b^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
c/
\(M=x^2+5y^2-4xy+2x-8y+2018\)
\(M=\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-4y+4\right)+2013\)
\(M=\left(x-2y+1\right)^2+\left(y-2\right)^2+2013\ge2013\)
\(M_{min}=2013\) khi \(\left\{{}\begin{matrix}x-2y+1=0\\y-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
cho :
a+b+c=1, a^2+b^2+c^2=1, a^3+b^3+c^3=1
tính a^2016+b^2017+c^2018
Cho 3 số a, b, c thỏa mãn a+b+c=0,a^2+b^2+c^2=2018.Tính a^4+b^4+c^4
\(a+b+c=0\)
⇔\(\left(a+b+c\right)^2=0\)
⇔\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
⇔\(2018+2\left(ab+bc+ca\right)=0\)
⇔\(ab+bc+ca=-1009\)
⇔\(\left(ab+bc+ca\right)^2=\left(-1009\right)^2=1009^2\)
⇔\(a^2b^2+b^2c^2+c^2a^2+2\left(ab^2c+abc^2+a^2bc\right)=1009^2\)
⇔\(a^2b^2+b^2c^2+c^2a^2+2abc\left(b+c+a\right)=1009^2\)
⇔\(a^2b^2+b^2c^2+c^2a^2=1009^2\)
\(a^2+b^2+c^2=2018\)
⇔\(\left(a^2+b^2+c^2\right)^2=2018^2\)
⇔\(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=2018^2\)
⇔\(a^4+b^4+c^4+2\cdot1009^2=2018^2\)
⇔\(a^4+b^4+c^4=2018^2-2\cdot1009^2=2036162\)
1. Cho \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) c/m
a) (2a+3c) . (2b-3d) = (2a- 3c) . (2b+3d)
b) \(\dfrac{\left(a^2+c\right)^2}{\left(b+d\right)^2}\) = \(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\)
c)\(\dfrac{a^3+b^3}{c^3+d^3}\) = \(\dfrac{a^3-b^3}{c^3-d^3}\)
d) \(\dfrac{a^{2018}-b^{2018}}{a^{2018}+b^{2018}}\) = \(\dfrac{c^{2018}-d^{2018}}{c^{2018}+d^{2018}}\)
HELP ME >~< !!!
a) \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)
Từ \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) = k ( k \(\in\) Q, k \(\ne\) 0 )
=> \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
VP = \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2.b.k+3.d.k}{2b+3d}\) = \(\dfrac{k.\left(2b+3d\right)}{2b+3d}\) = k (1)
VT = \(\dfrac{2a-3c}{2b-3d}\) = \(\dfrac{2.b.k-3.d.k}{2b-3d}\) = \(\dfrac{k.\left(2b-3d\right)}{2b-3d}\) = k (2)
Từ (1) và (2) ta có: \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)
hay: (2a+3c).(3b-3d) = (2a-3c).(2b+3d)
b: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=k^2\)
\(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{\left(bk-dk\right)^2}{\left(b-d\right)^2}=k^2\)
Do đó: \(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\)
c: \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3}{d^3}\)
\(\dfrac{a^3-b^3}{c^3-d^3}=\dfrac{b^3k^3-b^3}{d^3k^3-d^3}=\dfrac{b^3}{d^3}\)
Do đó: \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{a^3-b^3}{c^3-d^3}\)
d: \(\dfrac{a^{2018}-b^{2018}}{a^{2018}+b^{2018}}=\dfrac{b^{2018}k^{2018}-b^{2018}}{b^{2018}k^{2018}+b^{2018}}=\dfrac{k^{2018}-1}{k^{2018}+1}\)
\(\dfrac{c^{2018}-d^{2018}}{c^{2018}+d^{2018}}=\dfrac{k^{2018}-1}{k^{2018}+1}\)
Do đó: \(\dfrac{a^{2018}-b^{2018}}{a^{2018}+b^{2018}}=\dfrac{c^{2018}-d^{2018}}{c^{2018}+d^{2018}}\)
1) Cho 2 số hữu tỉ x, y có tổng bằng 4. Chứng minh rằng x.y ≤ 4
2) Cho 3 số hữu tỉ dương a, b, c thỏa mãn: \(\dfrac{a+b-c}{a}=\dfrac{b+c-a}{b}=\dfrac{c+a-b}{c}\)
Tính giá trị của biểu thức P = \(\dfrac{a^{1008}.b^{1009}.c}{a^{2018}+b^{2018}+c^{2018}}\)