Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn văn nhật nam
Xem chi tiết
ntkhai0708
22 tháng 3 2021 lúc 12:54

Áp dụng bất đẳng thức $x^2+y^2+z^2 \geq xy+yz+zx$ có:

$a^4+b^4+c^4 \geq (ab)^2+(bc)^2+(ca)^2 \geq abbc+bcca+abca=abc(a+b+c)$

b, đề đúng: $\dfrac{a^8+b^8+c^8}{(abc)^3} \geq \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$

Có \dfrac{a^8+b^8+c^8}{(abc)^3} \geq \dfrac{(ab)^4+(bc)^4+(ca)^4}{(abc)^3} \geq \dfrac{(abbc)^2+(bcca)^2+(abca)^2}{(abc)^3}$

$\geq \dfrac{a^2+b^2+c^2}{abc} \geq \dfrac{ab+bc+ca}{abc}= \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}$
Cả hai phần dấu $=$ xảy ra $⇔a=b=c$

Thuy Hwang
Xem chi tiết
Saran Dawnlee
Xem chi tiết
anonymous
21 tháng 12 2020 lúc 21:51

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\\ \Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\\ \Leftrightarrow\left(ab+bc+ca\right)\left(a+b\right)+c^2\left(a+b\right)=0\\ \Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Suy ra:

Trong 3 số a,b,c có 2 số đối nhau. Không mất tính tổng quát, giả sử a=-b

Thay vào ta dễ thấy:

\(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}=\dfrac{1}{a^n+b^n+c^n}\left(=\dfrac{1}{c^n}\right)\) (ĐPCM)

Trà My
Xem chi tiết
bỏ mặc tất cả
9 tháng 4 2016 lúc 22:34

Chiều rộng là : 15 : ( 5 - 3 ) x 3 = 22,5 m

Chiều dài là : 15 + 22,5 = 37,5 m

Chu vi là : ( 37,5 + 22,5 ) x 2 = 120 m

Diện tích là : 37,5 x 22,5 = 843,75 m2

bỏ mặc tất cả
9 tháng 4 2016 lúc 22:53

Ta có: (a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c... (a+b+c)=(a+b+c)/(a+b+c)=1 
=>(a+b-c)/c=1 => a+b-c=c =>a+b=2c (1) 
Tương tự: (b+c-a)/a=1 =>b+c=2a (2) 
(c+a-b)/b=1 =>c+a=2b (3) 
Thay (1), (2), (3) vào P, ta có: 
P=(a+b)/a . (b+c)/b .(a+c)/c=2c/a.2a/b.2b/c=2.2.2=8. Hết nhưng sách thì chia ra hai trường hợp như sau: 
Từ giả thiết, suy ra: 
(a+b-c)/c+2=(b+c-a)/a+2=(c+a-b)/b+2 
<=> (a+b+c)/c=(b+c+a)/a=(c+a+b)/b 
Xét 2 trường hợp: 
Nếu a+b+c=0 => (a+b)/a.(b+c)/b.(c+a)/c=((-c)(-a)(-b))/a... 
Nếu a+b+c khác 0 =>a=b=c =>P=2.2.2=8

Võ Bá Nguyên
Xem chi tiết
NGUYỄN♥️LINH.._.
20 tháng 3 2022 lúc 19:23

A

Nguyễn Ngọc Huy Toàn
20 tháng 3 2022 lúc 19:23

B

Vũ Quang Huy
20 tháng 3 2022 lúc 19:24

b

Lê Ngọc Huyền
Xem chi tiết
Where are you now
Xem chi tiết
hải yến ngô
22 tháng 6 2016 lúc 7:20

do a,b,c khác 0 => A= 1/a + 1/b + 1/c => A = a/1 + b/1 + c/1 => A= a+b+c /1 => A= 1/1 => A= 1 ( do A+b+c =1)

=> Amin = 1 tại a,b,c khác 0 và a + b +c =1

Đỗ Công Tùng
Xem chi tiết
holicuoi
Xem chi tiết
Trần Đức Thắng
16 tháng 7 2015 lúc 8:05

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)

Thay vào từng vế ta có 

     \(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)

     \(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => ĐPCM

Trần Bình Minh
23 tháng 9 2017 lúc 13:37

a/b=c/d 
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có : 
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2 
=>   a/c.b/d= ( a+b/c+d ) mũ 2 
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2 
=> dpcm

Nguyễn Thảo My
14 tháng 1 2018 lúc 21:17

Ta có a/b = c/d 

 => a/c= b/d 

adtccdtsbn ta có :