Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thịnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 11 2021 lúc 18:32

b: \(\Leftrightarrow\dfrac{x-2}{A}=\dfrac{\left(5x-1\right)\left(x-2\right)}{x^2\left(5x-1\right)+3\left(5x-1\right)}=\dfrac{x-2}{x^2+3}\)

hay \(A=x^2+3\)

Cuong Duc
Xem chi tiết
Hoàng Yến
11 tháng 2 2020 lúc 8:04

\(2\left(x+1\right)=5x+7\\ \Leftrightarrow2x+2=5x+7\\\Leftrightarrow 2x-5x=-2+7\\\Leftrightarrow -3x=5\\ \Leftrightarrow x=-\frac{5}{3}\)

Vậy phương trình trên có nghiệm là \(-\frac{5}{3}\)

\(3x-1=x+3\\ \Leftrightarrow3x-x=1+3\\ \Leftrightarrow2x=4\\\Leftrightarrow x=2\)

Vậy phương trình trên có nghiệm là \(2\)

\(15-7x=9-3x\\\Leftrightarrow -7x+3x=-15+9\\\Leftrightarrow -4x=-6\\ \Leftrightarrow x=\frac{3}{2}\)

Vậy phương trình trên có nghiệm là \(\frac{3}{2}\)

\(2x+1=15x-5\\ \Leftrightarrow2x-15x=-1-5\\ \Leftrightarrow-13x=-6\\ \Leftrightarrow x=\frac{6}{13}\)

Vậy phương trình trên có nghiệm là \(\frac{6}{13}\)

\(3x-2=2x+5\\ \Leftrightarrow3x-2x=2+5\\ \Leftrightarrow x=7\)

Vậy phương trình trên có nghiệm là \(7\)

Khách vãng lai đã xóa
Lê Quang Anh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
24 tháng 9 2020 lúc 19:09

a) ( 5 - 2x )( 2x + 7 ) - 4x2 + 25 = 0

<=> ( 5 - 2x )( 2x + 7 ) + ( 5 - 2x )( 5 + 2x ) = 0

<=> ( 5 - 2x )( 2x + 7 + 5 + 2x ) = 0

<=> ( 5 - 2x )( 4x + 12 ) = 0

<=> \(\orbr{\begin{cases}5-2x=0\\4x+12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

b) ( 5x2 + 3x - 2 )2 - ( 4x2 - x - 5 )2 = 0 ( như này chứ nhỉ ? )

<=> [ ( 5x2 + 3x - 2 ) - ( 4x2 - x - 5 ) ][ ( 5x2 + 3x - 2 ) + ( 4x2 - x - 5 ) ] = 0

<=> ( 5x2 + 3x - 2 - 4x2 + x + 5 )( 5x2 + 3x - 2 + 4x2 - x - 5 ) = 0

<=> ( x2 + 4x + 3 )( 9x2 + 2x - 7 ) = 0

<=> ( x2 + x + 3x + 3 )( 9x2 + 9x - 7x - 7 ) = 0

<=> [ x( x + 1 ) + 3( x + 1 ) ][ 9x( x + 1 ) - 7( x + 1 ) ] = 0

<=> ( x + 1 )( x + 3 )( x + 1 )( 9x - 7 ) = 0

<=> ( x + 1 )2( x + 3 )( 9x - 7 ) = 0

<=> x + 1 = 0 hoặc x + 3 = 0 hoặc 9x - 7 = 0

<=> x = -1 hoặc x = -3 hoặc x = 7/9

c) 15x4 - 8x3 - 14x2 - 8x + 15 = 0

<=> 15x4 + 22x3 - 30x3 + 15x2 + 15x2 - 44x2 - 30x + 22x + 15 = 0

<=> ( 15x4 + 22x3 + 15x2 ) - ( 30x3 + 44x2 + 30x ) + ( 15x2 + 22x + 15 ) = 0

<=> x2( 15x2 + 22x + 15 ) - 2x( 15x2 + 22x + 15 ) + ( 15x2 + 22x + 15 ) = 0

<=> ( 15x2 + 22x + 15 )( x2 - 2x + 1 ) = 0

<=> ( 15x2 + 22x + 15 )( x - 1 )2 = 0

<=> \(\orbr{\begin{cases}15x^2+22x+15=0\\\left(x-1\right)^2=0\end{cases}}\)

+) ( x - 1 )2 = 0 <=> x = 1

+) 15x2 + 22x + 15 = 15( x2 + 22/15x + 121/225 ) + 104/15 = 15( x + 11/25 )2 + 104/15 ≥ 104/15 > 0 ∀ x

Vậy phương trình có nghiệm duy nhất là x = 1

Khách vãng lai đã xóa
Lê Quang Anh
24 tháng 9 2020 lúc 19:15

Cảm ơn bạn câu b thiếu cái mũ 2 sorry :))

Khách vãng lai đã xóa
mạc trần
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
12 tháng 10 2020 lúc 15:40

\(A=\left(\frac{x}{25+5x}+\frac{5x+50}{x^2+5x}-\frac{10-2x}{x}\right)\div\frac{3x+15}{7}\)

ĐK : \(\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

\(=\left(\frac{x}{5\left(x+5\right)}+\frac{5\left(x+10\right)}{x\left(x+5\right)}-\frac{2\left(5-x\right)}{x}\right)\div\frac{3\left(x+5\right)}{7}\)

\(=\left(\frac{x^2}{5x\left(x+5\right)}+\frac{5\cdot5\cdot\left(x+10\right)}{5x\left(x+5\right)}-\frac{2\left(5-x\right)\cdot5\left(x+5\right)}{5x\left(x+5\right)}\right)\div\frac{3\left(x+5\right)}{7}\)

\(=\left(\frac{x^2}{5x\left(x+5\right)}+\frac{25x+250}{5x\left(x+5\right)}-\frac{10\left(25-x^2\right)}{5x\left(x+5\right)}\right)\div\frac{3\left(x+5\right)}{7}\)

\(=\left(\frac{x^2+25x+250-250+10x^2}{5x\left(x+5\right)}\right)\div\frac{3\left(x+5\right)}{7}\)

\(=\frac{11x^2+25x}{5x\left(x+5\right)}\times\frac{7}{3\left(x+5\right)}\)

\(=\frac{77x^2+175x}{15x\left(x+5\right)^2}\)

\(=\frac{77x^2+175x}{15x\left(x^2+10x+25\right)}=\frac{77x^2+175x}{15x^3+150x^2+375x}\)

\(=\frac{77x+175}{15x^2+150x+375}\)

Khách vãng lai đã xóa
Trần Hữu Minh Trí
Xem chi tiết
Toru
20 tháng 8 2023 lúc 20:26

\(a,\left(5x-3\right)\left(3x+1\right)-\left(15x+1\right)\left(x-2\right)=0\)

\(\Rightarrow\left(15x^2-4x-3\right)-\left(15x^2-29x-2\right)=0\)

\(\Rightarrow15x^2-4x-3-15x^2+29x+2=0\)

\(\Rightarrow25x-1=0\) 

\(\Rightarrow x=\dfrac{1}{25}\)

\(----------\)

\(b,x^2+\left(x+5\right)\left(x-3\right)-25=0\)

\(\Rightarrow x^2+x^2+2x-15-25=0\)

\(\Rightarrow2x^2+2x=40\)

\(\Rightarrow2x\left(x+1\right)=40\)

\(\Rightarrow x\left(x+1\right)=20\)

\(\Rightarrow x;x+1\) là ước của 20

mà \(x;x+1\) là hai số nguyên liên tiếp \(\left(x\in Z\right)\)

nên \(x\left(x+1\right)=4.5=\left(-5\right).\left(-4\right)=20\)

\(\Rightarrow x\in\left\{4;-5\right\}\)

Nguyễn Lê Phước Thịnh
20 tháng 8 2023 lúc 20:21

a: =>15x^2+5x-9x-3-15x^2+30x-x+2=0

=>25x-1=0

=>x=1/25

b: =>x^2+x^2+2x-15-25=0

=>2x^2+2x-40=0

=>x^2+x-20=0

=>(x+5)(x-4)=0

=>x=4 hoặc x=-5

A.Thư
Xem chi tiết
Thiên Hàn
19 tháng 12 2018 lúc 20:52

Bài 1:

a) \(\dfrac{3x^2-5}{x^2-5x}+\dfrac{5-15x}{5x-25}\)

\(=\dfrac{3x^2-5}{x\left(x-5\right)}+\dfrac{5\left(1-3x\right)}{5\left(x-5\right)}\)

\(=\dfrac{3x^2-5}{x\left(x-5\right)}+\dfrac{1-3x}{x-5}\)

\(=\dfrac{3x^2-5}{x\left(x-5\right)}+\dfrac{x\left(1-3x\right)}{x\left(x-5\right)}\)

\(=\dfrac{3x^2-5+x\left(1-3x\right)}{x\left(x-5\right)}\)

\(=\dfrac{3x^2-5+x-3x^2}{x\left(x-5\right)}\)

\(=\dfrac{-5+x}{x\left(x-5\right)}\)

\(=\dfrac{x-5}{x\left(x-5\right)}\)

\(=\dfrac{1}{x}\)

b) \(\dfrac{4+x^3}{x-3}-\dfrac{2x+2x^2}{x-3}+\dfrac{2x-13}{x-3}\)

\(=\dfrac{\left(4+x^3\right)-\left(2x+2x^2\right)+\left(2x-13\right)}{x-3}\)

\(=\dfrac{4+x^3-2x-2x^2+2x-13}{x-3}\)

\(=\dfrac{x^3-2x^2-9}{x-3}\)

\(=\dfrac{x^3-3x^2+x^2-9}{x-3}\)

\(=\dfrac{x^2\left(x-3\right)+\left(x-3\right)\left(x+3\right)}{x-3}\)

\(=\dfrac{\left(x-3\right)\left(x^2+x+3\right)}{x-3}\)

\(=x^2+x+3\)

c) \(\dfrac{2}{x-5}+\dfrac{x-25}{\left(x+5\right)\left(x-5\right)}\)

\(=\dfrac{2\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}+\dfrac{x-25}{\left(x+5\right)\left(x-5\right)}\)

\(=\dfrac{2\left(x+5\right)+x-25}{\left(x+5\right)\left(x-5\right)}\)

\(=\dfrac{2x+10+x-25}{\left(x+5\right)\left(x-5\right)}\)

\(=\dfrac{3x-15}{\left(x+5\right)\left(x-5\right)}\)

\(=\dfrac{3\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}\)

\(=\dfrac{3}{x+5}\)

d) Đề sai?

Bài 2:

\(A=2\left(x+1\right)+\left(3x+2\right)\left(3x-2\right)-9x^2\)

\(A=2x+2+9x^2-4-9x^2\)

\(A=2x-2\)

\(A=2\left(x-1\right)\)

Thay x = 15 vào A ta được:

\(A=2\left(15-1\right)\)

\(A=2.14=28\)

Khánh Nè Mọi Ngừi
Xem chi tiết
Trúc Giang
9 tháng 2 2021 lúc 17:37

a)  3x – 15 = 25 – 5x 

=> 3x + 5x = 25 + 15

=> 8x = 40

=> x = 5

 b) 3x - 17 = 2x – 7     

=> 3x - 2x = -7 + 17

=> x = 10

 c) 2x – 17 =  – (3x – 18)

=> 2x - 17 = -3x + 18

=> 2x + 3x = 18 + 17

=> 5x = 35

=> x = 7

d) 3x – 14 = 2(x – 9) + 1

=> 3x - 14 = 2x - 18 + 1

=> 3x - 2x = -18 + 1 + 14

=> x = -3

f) (x – 5)2 = 9          

\(\Rightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)

 

 

Nguyễn Lê Phước Thịnh
9 tháng 2 2021 lúc 17:44

a) Ta có: \(3x-15=25-5x\)

\(\Leftrightarrow3x-15-25+5x=0\)

\(\Leftrightarrow8x-40=0\)

\(\Leftrightarrow8x=40\)

hay x=5

Vậy: x=5

b) Ta có: \(3x-17=2x-7\)

\(\Leftrightarrow3x-17-2x+7=0\)

\(\Leftrightarrow x-10=0\)

hay x=10

Vậy: x=10

c) Ta có: \(2x-17=-\left(3x-18\right)\)

\(\Leftrightarrow2x-17=-3x+18\)

\(\Leftrightarrow2x-17+3x-18=0\)

\(\Leftrightarrow5x-35=0\)

\(\Leftrightarrow5x=35\)

hay x=7

Vậy: x=7

d) Ta có: \(3x-14=2\left(x-9\right)+1\)

\(\Leftrightarrow3x-14=2x-18+1\)

\(\Leftrightarrow3x-14-2x+18-1=0\)

\(\Leftrightarrow x+3=0\)

\(\Leftrightarrow x=-3\)

Vậy: x=-3

f) Ta có: \(\left(x-5\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)

Vậy: \(x\in\left\{2;8\right\}\)

Lê Trang
9 tháng 2 2021 lúc 17:44

Bài 2. Tìm x, biết :                                

a) \(3x-15=25-5x\)

\(\Leftrightarrow8x=40\)

\(\Leftrightarrow x=5\)

Vậy x = 5

b) \(3x-17=2x-7\)

\(\Leftrightarrow x=10\)

Vậy x = 10

c) \(2x-17=-\left(3x-18\right)\)

\(\Leftrightarrow2x-17=18-3x\)

\(\Leftrightarrow5x=35\)

\(\Leftrightarrow x=7\)

Vậy x = 7

d) \(3x-14=2\left(x-9\right)+1\)

\(\Leftrightarrow3x-14=2x-18+1\)

\(\Leftrightarrow3x-14=2x-17\)

\(\Leftrightarrow x=-3\)

Vậy x = -3

e) \(\left(x-5\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)

Vậy x = {8; 2}

Thịnh Nguyễn
Xem chi tiết
Yen Nhi
2 tháng 3 2022 lúc 21:43

`Answer:`

a) Phân tích \(\frac{7x}{15x-5}\) được xác định khi: \(15x-5\ne0\Rightarrow15x\ne5\Rightarrow x\ne\frac{1}{3}\)

b) \(\frac{x+4}{x^2-9}=\frac{x+4}{\left(x-3\right)\left(x+3\right)}\)

Vậy điều kiện xác định: `x\ne+-3`

c) Vì phân thức có chứa ẩn dưới mẫu nên để cho phân thức xác định thì: 

\(36x^2-25\ne0\Rightarrow36x^2\ne25\Rightarrow x^2\ne\frac{25}{36}\Rightarrow x\ne\pm\frac{5}{6}\)

d)  Phân thức xác định khi \(x^2+2x+3\ne0\Rightarrow\left(x+1\right)^2+2\ne0\)

Nhận thấy \(\left(x+1\right)^2+2\ge2>0\forall x\)

\(\Rightarrow\left(x+1\right)^2+2\ne0\) (Luôn đúng)

Vậy phân thức trên được xác định với mọi `x`

Khách vãng lai đã xóa
Nguyễn Ngọc
Xem chi tiết