Thu gọn các đa thức sau:
\(\frac{1}{2}x^2y^3-x^2y^3+3x^2y^2z^2-z^4-3x^2y^2z^2\)
Thu gọn các đơn thức sau và tìm bậc:
a)1/2x^2.(-2x^2y^2z).-1/3x^2y^3
b)(-x^2y).1/2x^2y^3.(-2xy^2z)^2
Thu gọn các đơn thức sau và tìm bậc
a, 1/2x^2.(-2x^2y^2z).-1/3x^2y^3
b, (-x^2y)^3.1/2x^2y^2.(-2xy^2z)^3
thu gọn và sắp các đơn thức và đa thức sau
\(\left(\frac{-3}{7}x^3y^2z\right)\left(-\frac{7}{9}yz^2\right)\)
\(\frac{5}{2}x^2y^3-3y^3x^2-y^3x^2+\frac{3}{2}x^2y^3\)
Rút gọn các biểu thức sau:
a) A= 1/3xy + 4xy - 2xy
b) B=-xy^2 + 3/2xy^2 + 4/3xy^2
c) C= (2xy)^2 + 2/3x^2y^2 - 4/3xyx
d) D= x. (3xy^2z) + 4x^2y^2z - 8x^2y . yz
a: =xy(1/3+4-2)=7/3xy
b: =xy^2(-1+3/2+4/3)=(1/3+3/2)xy^2=11/6xy^2
c: =4x^2y^2+2/3x^2y^2-4/3x^2y=-4/3x^2y+14/3x^2y^2
d: =3x^2y^2z+4x^2y^2z-8x^2y^2z=-x^2y^2z
Bài 1 : Phân tích các đa thức sau thành nhân tử :
a) \(2x-2y-x^2+2xy-y^2\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y\)
c) \(x^3-xy^2+x^2y-y^2z\)
a) \(=2\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
\(=2\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(2-x+y\right)\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+y^3\right)+\left(3x^2+3xy^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+3xy-1\right)\)
\(=\left(x+y\right)\left(x^2+y^2+2xy-1\right)\)
a) \(x^6+x^2y^5+xy^6+x^2y^5-xy^6\)
b) \(\dfrac{1}{2}x^2y^3-x^2y^3+3x^2y^2z^2-z^4-3x^2y^2z^2\)
a) x6+x2y5+xy6+x2y5-xy6
= x6+(x2y5+x2y5)+(xy6-xy6)
= x6+2x2y5
b) \(\dfrac{1}{2}\)x2y3-x2y3+3x2y2z2-z4-3x2y2z2
= (\(\dfrac{1}{2}\)x2y3-x2y3)+(3x2y2z2-3x2y2z2)-z4
= -\(\dfrac{1}{2}\)x2y3-z4
BÀI 8: THU GỌN VÀ TÌM BẬC CỦA MỖI ĐA THỨC:
A= -2xy + 3/2xy^2 + 1/2xy^2 + xy
B= xy^2z + 2xy^2z - xyz - 3xy^2z + xy^2z
C= 4x^2y^3 + x^4 - 2x^2 + 6x^4 - x^2y^3
D= 3/4xy^2 - 2xy - 1/2xy^2 + 3xy
E= 2x^2 - 3y^3 - z^4 - 4x^2 + 2y^3 + 3z^4
F= 3xy^2z + xy^2z - xyz + 2xy^2z -3xyz
0,2:x=1,03+3,97
a: A=-2xy+xy+xy^2=-xy+xy^2
Bậc là 3
b: \(B=xy^2z+2xy^2z-3xy^2z+xy^2z-xyz=-xyz+xy^2z\)
Bậc là 4
c: \(C=4x^2y^3-x^2y^3+x^4+6x^4-2x^2=3x^2y^3+7x^4-2x^2\)
Bậc là 5
d: \(D=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+xy=\dfrac{1}{4}xy^2+xy\)
bậc là 3
e: \(E=2x^2-4x^2+3z^4-z^4-3y^3+2y^3\)
=-2x^2+2z^4-y^3
Bậc là 4
f: \(=3xy^2z+xy^2z+2xy^2z-4xyz=6xy^2z-4xyz\)
Bậc là 4
hân tích đa thức thành nhân tử:
a)\(2x^2y^2+2x^2z^2+2y^2z^2-x^4-y^4-z^4\)
b_)\(x^5-3x^4+4x^3-5x^2+3x-2\)
c)\(x^3y-x^2z+y^2z-y^2x+xz^2-yz^3\)
1) tìm nghiệm của đa thức sau x4+x3+x+1
2) viết dưới dạng thu gọn rồi cho biết bậc của đơn thức sau
a) 3x^2(-x^2y)^3(-2x)y^4
b)9xyz(-x^2z)(-1/3y^2z)^6
1/ P(x)= x^4 + x^3 +x + 1
= x^3(x+1)+(x+1) *1
= (x+1)(x^3+1)
Nghiệm P(x)khi P(x)=0
hay (x+1)(x^3+1)=0
suy ra x+1=0 do đó x=-1
và x^3+1=0 suy ra x^3=-1 nên x=-1
Vậy P(x) có 1 nghiệm là x=-1