cmr: (4n-7)2 - 25 chia hết cho 8
CMR với mọi số nguyên n thì
(4n+3)^2-25 chia hết cho 8
CMR: Mọi n thuộc Z ta có
E = \(\left(4n+3\right)^2\) - 25 chia hết cho 8
Link :Câu hỏi của Lê Thị Yến Ninh - Toán lớp 8 - Học toán với OnlineMath
\(\left(4n+3\right)^2-25=16n^2+24n+9-25=16n^2+24n-16=8\left(2n^2+3n-2\right);n\in Z\Rightarrow2n^2+3n-2\in Z\Rightarrow E⋮8\left(đpcm\right)\)
Viết biểu thức \(\left(4n+3\right)^2-25\) thành tích
CMR vs mọi số nguyên n biểu thức \(\left(4n+3\right)^2-25\)chia hết cho 8
\(\left(4n+3\right)^2-25\)
\(=\left(4n+3\right)^2-5^2\)
\(=\left(4n+3-5\right)\left(4n+3+5\right)\)
\(=\left(4n-2\right)\left(4n+8\right)\)
Ta có ; \(\left(4n+3\right)^2-25=\left(4n+3\right)^2-5^2=\left(4n+3-5\right)\left(4n+3+5\right)\)
\(=\left(4n-2\right)\left(4n+8\right)=8\left(2n-1\right)\left(n+2\right)\)chia hết cho 8 với mọi số nguyên n
bài 1 cho tổng A =71+72+73 +...+ 74k ( trong đó k là số tự nhiên cho trước chia hết cho 400 )
CMR TỔNG A chia hết cho 400
bài 2 : CMR n2 +4n +5 không chia hết cho 8 với mọi n lẻ
1. CMR: 7^7^7^7^7^7 - 7^7^7^7 chia hết cho 10
2. CMR: 2^3^4n-1 + 3 chia hết cho 19 với mọi n thuộc N
a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn
b: Đặt \(A=n^3+3n^2-n-3\)
\(=\left(n^3+3n^2\right)-\left(n+3\right)\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
n lẻ nên n=2k+1
=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)
\(=8k\left(k+1\right)\left(k+2\right)\)
Vì k;k+1;k+2 là ba số nguyên liên tiếp
nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)
=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)
c:
d: Đặt \(B=n^4-4n^3-4n^2+16n\)
\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)
\(=n^3\left(n-4\right)-4n\left(n-4\right)\)
\(=\left(n-4\right)\left(n^3-4n\right)\)
\(=n\left(n-4\right)\left(n^2-4\right)\)
\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)
n chẵn và n>=4 nên n=2k
B=n(n-4)(n-2)(n+2)
\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)
\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)
Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp
nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)
=>B chia hết cho \(16\cdot24=384\)
CMR: 32n+3+24n+1 chia hết cho 25
Bài 1: CMR :Với mọi n ∈ Z thì:
a) A = 4n^2 + 4n chia hết cho 8
Bài 2: CMR nếu: ( 6x + 7y) chia hết 31 thì ( x+ 7y) chia hết 31
Ta có :\(4n^2+4n=4n\left(n+1\right)\)
Mà n(n+1)\(⋮2\)(n\(\in z\))
\(\Rightarrow4n\left(n+1\right)⋮2.4=8\)
\(\Rightarrow\)dpcm
Ta có : (6x+11y) =31(x+6y)-25(x+7y)
Do 6x+11y và 31(x+6y) \(⋮\) 31
=> 25(x+7y) chia hết cho 31
Do (25,31)=1 (2 số nguyên tố cùng nhau)
=> x+7y \(⋮\) 31
ChoA=(2n+2).(4n+8),CMR A chia hết cho 16
Có \(A=\left(2n+2\right).\left(4n+8\right)=8.\left(n+1\right).\left(n+2\right)\)
Lại có n + 1 , n + 2 là 2 số tự nhiên liên tiếp
nên (n + 1).(n + 2) \(⋮2\forall n\inℕ\)
\(\Leftrightarrow A=8\left(n+1\right)\left(n+2\right)⋮16\)