Cho ba số thực a,b,c thỏa a + b + c = 0.
Chứng minh: \(\frac{a^7+b^7+c^7}{7}=\frac{a^2+b^2+c^2}{2}.\frac{a^5+b^5+c^5}{5}\)
Cho 3 số a,b,c thỏa mãn a + b + c =0. CMR
a, \(\frac{a^5+b^5+c^5}{5}=abc.\frac{a^2+b^2+c^2}{2}\)
b, 2(a7 + b7 + c7) = 7abc(a4 + b4 + c4)
Lời giải:
a) Thay $a+b=-c$ ta có:
\(a^5+b^5+c^5=(a^2+b^2+c^2)(a^3+b^3+c^3)-a^2b^2(a+b)-b^2c^2(b+c)-c^2a^2(c+a)\)
\(=(a^2+b^2+c^2)[(a+b)^3-3ab(a+b)+c^3]+a^2b^2c+b^2c^2a+c^2a^2b\)
\(=(a^2+b^2+c^2)(-c^3+3abc+c^3]+abc(ab+bc+ac)\)
\(=abc(3a^2+3b^2+3c^2+ab+bc+ac)\)
\(=abc.\left(\frac{5}{2}(a^2+b^2+c^2)+\frac{a^2+b^2+c^2+2ab+2bc+2ac}{2}\right)\)
\(=abc[\frac{5}{2}(a^2+b^2+c^2)+\frac{(a+b+c)^2}{2}]=\frac{5abc(a^2+b^2+c^2)}{2}\) (đpcm)
b) Áp dụng kết quả $a^3+b^3+c^3=3abc$ đã làm ở phần a và điều kiện đề bài $a+b+c=0$ ta có:
\(a^7+b^7+c^7=(a^4+b^4+c^4)(a^3+b^3+c^3)-a^3b^3(a+b)-b^3c^3(b+c)-c^3a^3(c+a)\)
\(=3abc(a^4+b^4+c^4)+a^3b^3c+b^3c^3a+c^3a^3b\)
\(=abc(3a^4+3b^4+3c^4+a^2b^2+b^2c^2+c^2a^2)(1)\)
Mà:
\(a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)\)
\(=[(a+b+c)^2-2(ab+bc+ac)]^2-2(a^2b^2+b^2c^2+c^2a^2)\)
\(=4(ab+bc+ac)^2-2a^2b^2-2b^2c^2-2c^2a^2=2(a^2b^2+b^2c^2+c^2a^2)+8abc(a+b+c)\)
\(=2(a^2b^2+b^2c^2+c^2a^2)\)
\(\Rightarrow \frac{a^4+b^4+c^4}{2}=a^2b^2+b^2c^2+c^2a^2(2)\)
Từ $(1);(2)\Rightarrow a^7+b^7+c^7=abc(3a^4+3b^4+3c^4+\frac{a^4+b^4+c^4}{2})=\frac{7abc(a^4+b^4+c^4)}{2}$ (đpcm)
Cho các số thực dương a, b, c thỏa mãn a + b+ c = 3. Chứng minh rằng:
\(\sqrt{2a^2+\frac{7}{b^2}}+\sqrt{2b^2+\frac{7}{c^2}}+\sqrt{2c^2+\frac{7}{a^2}}\) ≥ 9
\(\left(\sqrt{2}.\sqrt{2}x+\sqrt{7}.\frac{\sqrt{7}}{y}\right)^2\le\left(2+7\right)\left(2x^2+\frac{7}{y^2}\right)\)
\(\Rightarrow\sqrt{2x^2+\frac{7}{y^2}}\ge\frac{1}{3}\left(2x+\frac{7}{y}\right)\)
\(\Rightarrow VT\ge\frac{1}{3}\left[2\left(a+b+c\right)+7\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]\)
\(VT\ge\frac{1}{3}\left(6+\frac{63}{a+b+c}\right)=\frac{1}{3}\left(6+\frac{63}{3}\right)=9\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho 3 số dương a,b,c thỏa mãn \(a^2+b^2+c^2=\frac{7}{5}\)
Chứng minh: \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< \frac{1}{abc}\)
Buffalo way!
\(\Leftrightarrow\frac{7}{5}\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)\le\frac{a^2+b^2+c^2}{abc}\) (đồng bậc 2 vế)
\(\Leftrightarrow7\left(bc+a\left(c-b\right)\right)\le5\left(a^2+b^2+c^2\right)\)
Ta có:\(VP-VT=5a^2+\left(b-c\right)a+5b^2+5c^2-7bc\)
\(=\frac{\left(10a+b-c\right)^2+99\left(b-\frac{69c}{99}\right)^2+\frac{560}{11}c^2}{20}\ge0\)
qed./.
Cho các số thực dương $a,b,c$ thỏa mãn $a+b+c=1$. Chứng minh rằng $\frac{a}{2a+b^{2}}+\frac{b}{2b+c^{2}}+\frac{c}{2c+a^{2}}\leq \frac{1}{7}\left ( \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \right )$
Ta có: \(2a+b^2=2a\left(a+b+c\right)+b^2=b^2+2a^2+2ab+2ac\)
\(\ge4ab+2ac+a^2\)
\(\Rightarrow\frac{a}{2a+b^2}\le\frac{a}{4ab+2ac+a^2}=\frac{1}{4b+2c+a}\)
\(\le\frac{1}{49}.\frac{49}{4b+2c+a}=\frac{1}{49}.\frac{\left(4+2+1\right)^2}{4b+2c+a}\)
\(\le\frac{1}{49}\left(\frac{16}{4b}+\frac{4}{2c}+\frac{1}{a}\right)=\frac{1}{49}\left(\frac{4}{b}+\frac{2}{c}+\frac{1}{a}\right)\)
CMTT: \(\frac{b}{2b+c^2}\le\frac{1}{49}\left(\frac{4}{c}+\frac{2}{a}+\frac{1}{b}\right);\frac{c}{2c+a^2}\le\frac{1}{49}\left(\frac{4}{a}+\frac{2}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{a}{2a+b^2}+\frac{b}{2b+c^2}+\frac{c}{2c+a^2}\le\frac{1}{7}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm )
Cho a,b,c là các số dương thỏa mãn abc=1. Chứng minh rằng:
\(\frac{a^2b^2}{a^7+a^2b^2+b^7}+\frac{b^2c^2}{b^7+b^2c^2+c^7}+\frac{c^2a^2}{c^7+c^2a^2+a^7}\le1\)
Trước hết ta chứng minh các bđt : \(a^7+b^7\ge a^2b^2\left(a^3+b^3\right)\left(1\right)\)
Thật vậy:
\(\left(1\right)\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\ge0\)(luôn đúng)
Lại có : \(a^3+b^3+1\ge ab\left(a+b+1\right)\)
\(\Leftrightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)
mà \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)(luôn đúng)
Áp dụng các bđt trên vào bài toán ta có
∑\(\frac{a^2b^2}{a^7+a^2b^2+b^7}\le\)∑\(\frac{a^2b^2}{a^3b^3\left(a+b+c\right)}\le\)∑\(\frac{a+b+c}{a+b+c}=1\)
Bất đẳng thức được chứng minh
Dấu "=" xảy ra khi a=b=c=1
Em xem lại dòng thứ 4 và giải thích lại giúp cô với! ko đúng hoặc bị nhầm
chứng minh bđt "Lại có" ạ
Cho các số thực dương a,b,c thỏa mãn a2 + b2 + c2 = 3.
Chứng minh rằng : \(\frac{a^2b^2+7}{\left(a+b\right)^2}+\frac{b^2c^2+7}{\left(b+c\right)^2}+\frac{c^2a^2+7}{\left(c+a\right)^2}\ge6\)
12(a+b+c)2+12(a2+b2+c2)" role="presentation" style="border:0px; box-sizing:inherit; direction:ltr; display:inline-block; float:none; font-size:18.08px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
12(a+b+c)2+16(a+b+c)2=6" role="presentation" style="border:0px; box-sizing:inherit; direction:ltr; display:inline-block; float:none; font-size:18.08px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
Dấu "=" xảy ra khi
Ta có: \(\frac{a^2b^2+7}{\left(a+b\right)^2}=\frac{a^2b^2+1+6}{\left(a+b\right)^2}\ge\frac{2ab+2\left(a^2+b^2+c^2\right)}{\left(a+b\right)^2}\)( cô-si )
\(=\frac{\left(a+b\right)^2+a^2+b^2+2c^2}{\left(a+b\right)^2}=1+\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}\)\(\ge1+\frac{a^2+b^2+2c^2}{2\left(a^2+b^2\right)}=1+\frac{1}{2}+\frac{c^2}{a^2+b^2}=\frac{3}{2}+\frac{c^2}{a^2+b^2}\)
CMTT \(\Rightarrow\)\(VT\ge\frac{9}{2}+\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\)
\(P=\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\)
Đặt \(\hept{\begin{cases}b^2+c^2=x>0\\a^2+c^2=y>0\\a^2+b^2=z>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^2=\frac{y+z-x}{2}\\b^2=\frac{z+x-y}{2}\\c^2=\frac{x+y-z}{2}\end{cases}}\)
\(\Rightarrow P=\frac{y+z-x}{2x}+\frac{z+x-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{y}{2x}+\frac{z}{2x}-\frac{1}{2}+\frac{z}{2y}+\frac{x}{2y}-\frac{1}{2}+\frac{x}{2z}+\frac{y}{2z}-\frac{1}{2}\)
\(=\left(\frac{y}{2x}+\frac{x}{2y}\right)+\left(\frac{z}{2x}+\frac{x}{2z}\right)+\left(\frac{z}{2y}+\frac{y}{2z}\right)-\frac{3}{2}\)
\(\ge1+1+1-\frac{3}{2}=\frac{3}{2}\)( bđt cô si )
\(\Rightarrow VT\ge\frac{9}{2}+\frac{3}{2}=6\) ( đpcm)
Dấu "=" xảy ra <=> a=b=c=1
1, cho a,b,c là các số thực dương chứng minh rằng \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2a+b}{a\left(a+2b\right)}+\frac{2b+c}{b\left(b+2c\right)}+\frac{2c+a}{c\left(a+2c\right)}\)
2,cho x,y,z thỏa mãn x+y+z=5 và xy+yz+xz=8 chứng minh rằng \(1\le x\le\frac{7}{3}\)
3, cho a,b,c>0 chứng minh rằng\(\frac{a^2}{2a^2+\left(b+c-a\right)^2}+\frac{b^2}{2b^2+\left(b+c-a\right)^2}+\frac{c^2}{2c^2+\left(b+a-c\right)^2}\le1\)
4,cho a,b,c là các số thực bất kỳ chứng minh rằng \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\left(ab+bc+ac-1\right)^2\)
5, cho a,b,c > 1 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)chứng minh rằng \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{a+b+c}\)
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z
cho: a+b+c=0 CMR:
\(\frac{a^2+b^2+c^2}{2}\)+\(\frac{a^5+b^5+c^5}{5}\)=\(\frac{a^7+b^7+c^7}{7}\)
các bạn giải cho mình nha cần gấp lắm đó
PLEASE!!!
cho a,b,c là các số dương thỏa mãn \(a^2+b^2+c^2=3\)Chứng minh bất đẳng thức
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{4}{a^2+7}+\frac{4}{b^2+7}+\frac{4}{c^2+7}\)