Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cristiano Ronaldo
Xem chi tiết
blobla
Xem chi tiết
1st_parkour
Xem chi tiết
Nguyễn Ngọc Anh Minh
28 tháng 4 2017 lúc 15:48

Đặt vế trái của Bất đẳng thức la A

\(A< \frac{1}{8}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{40}+\frac{1}{40}+\frac{1}{40}.\)

\(A< \frac{1}{8}+\frac{3}{10}+\frac{3}{40}=\frac{3}{10}< \frac{5}{10}=\frac{1}{2}\)

Nguyễn Anh Tú
12 tháng 8 2017 lúc 19:47

hhhhhhhhh

Kaito Fanny
26 tháng 4 2018 lúc 19:16

Ta thấy: \(\frac{1}{8}< \frac{1}{2}\)

             \(\frac{1}{11}< \frac{1}{2}\)

              \(\frac{1}{12}< \frac{1}{2}\) 

              \(\frac{1}{13}< \frac{1}{2}\)

              \(\frac{1}{41}< \frac{1}{2}\)

               \(\frac{1}{42}< \frac{1}{2}\)

               \(\frac{1}{43}< \frac{1}{2}\)

=> \(\frac{1}{8}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{41}+\frac{1}{42}+\frac{1}{43}< \frac{1}{2}\)

Tnguyeen:))
Xem chi tiết
Huỳnh Quang Sang
14 tháng 5 2019 lúc 20:44

Nhận xét : Từ \(\frac{1}{41}\rightarrow\frac{1}{80}\)có 40 phân số . Gọi tổng các phân số đó là A.Ta có thể nhóm các phân số thành hai nhóm rồi so sánh các phân số có tử giống nhau.

Ta có : \(A=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}\)

\(=\left[\frac{1}{41}+\frac{1}{42}+...+\frac{1}{59}+\frac{1}{60}\right]+\left[\frac{1}{61}+\frac{1}{62}+...+\frac{1}{79}+\frac{1}{80}\right]\)

Vì \(\frac{1}{41}>\frac{1}{42}>...>\frac{1}{60}>\frac{1}{61}>...>\frac{1}{80}\) nên \(A>\left[\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}+\frac{1}{60}\right]+\left[\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}+\frac{1}{80}\right]\)

\(A>\frac{20}{80}+\frac{20}{80}=\frac{1}{3}+\frac{1}{4}=\frac{4+3}{12}=\frac{7}{12}\)

Vậy : \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)

I Love Family
14 tháng 5 2019 lúc 20:45

Ta có: 7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80 

1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80) 

Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60

=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60

và 1/61> 1/62> ... >1/79> 1/80

=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80

Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12

=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12

=> ĐPCM                      ( ĐPCM có nghĩa là điều phải chứng minh)

~ Học tốt ~ K cho mk nhé! Thank you.

T.Ps
14 tháng 5 2019 lúc 20:50

#)Giải :

 \(A=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}\)

\(A=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)\)

Ta có : \(\frac{1}{41}>\frac{1}{60};\frac{1}{42}>\frac{1}{60};...;\frac{1}{59}>\frac{1}{60}\)

\(\Rightarrow\frac{1}{41}+\frac{1}{42}+...\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{20}{60}=\frac{1}{3}\left(1\right)\)

Lại có : \(\frac{1}{61}>\frac{1}{81};\frac{1}{62};>\frac{1}{80};...;\frac{1}{79}>\frac{1}{80}\)

\(\Rightarrow\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}=\frac{20}{80}=\frac{1}{4}\left(2\right)\)

Cộng (1) và (2) ta được :

\(A>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\left(đpcm\right)\)

        #~Will~be~Pens~#

nguyen thuy tram
Xem chi tiết
Yasuo
13 tháng 5 2018 lúc 22:53

(1/41+1/42+1/43+...+1/50)+(1/51+1/52+...+1/100)

1/41+1/42+...+1/50 > 1/50+1/50+...+1/50 (10 số hạng)

                                   =1+1+...+1/50=10/50=1/5

1/51+1/52+...+1/100 > 1/100+1/100+1/100 (50 số hạng)

                                   =1+1+...+1/100=50/100=1/2

=> 1/41+1/42+1/43+...+1/99+1/100> 1/5 +1/2=7/10

Lê Việt Hùng
Xem chi tiết
GoKu Đại Chiến Super Man
Xem chi tiết
lê thị lan anh
Xem chi tiết
Ngô Tấn Đạt
28 tháng 8 2016 lúc 20:44

mình nghĩ chắc mình biết bài này 

Nguyễn Mạnh Đạt
28 tháng 8 2016 lúc 20:32

mình chịu 

Ngô Tấn Đạt
28 tháng 8 2016 lúc 20:47

Đặt \(A=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}\)

\(A>\frac{1}{80}+\frac{1}{80}+....+\frac{1}{80}\)

\(\frac{1}{80}+\frac{1}{80}+.....+\frac{1}{80}\\ =\frac{40}{80}=\frac{1}{2}\)

Vì \(\frac{1}{2}< \frac{5}{6}\\ =>A< \frac{5}{6}\)

\(A< \frac{1}{40}+\frac{1}{40}+.....+\frac{1}{40}\)

\(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\\ =\frac{40}{40}=1\)

Vì \(1>\frac{7}{12}\\ =>A>\frac{7}{12}\)

bài này đề có vấn để

Nguyễn Bá Thành
Xem chi tiết
Nguyễn Linh Ngọc
19 tháng 8 2017 lúc 11:03

bn vào các câu hỏi tương tự là sẽ thấy mấy câu y chang câu của bn thôi

Đinh Đức Hùng
19 tháng 8 2017 lúc 11:06

Ta có :

 \(\frac{1}{41}>\frac{1}{60};\frac{1}{42}>\frac{1}{60};\frac{1}{43}>\frac{1}{60};....;\frac{1}{60}=\frac{1}{60}\)

\(\Rightarrow\frac{1}{41}+\frac{1}{42}+....+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=20.\frac{1}{60}=\frac{1}{3}\)(1)

\(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};\frac{1}{63}>\frac{1}{80};....;\frac{1}{80}=\frac{1}{80}\)

\(\Rightarrow\frac{1}{61}+\frac{1}{62}+....+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+....+\frac{1}{80}=20.\frac{1}{80}=\frac{1}{4}\)(2)

Từ (1) và (2) \(\Rightarrow y=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+....+\frac{1}{80}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)(đpvm)

╰Nguyễn Trí Nghĩa (team...
23 tháng 2 2020 lúc 16:25

y=\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...........................+\frac{1}{79}+\frac{1}{80}\)(có 80 số hạng)

=>y=\(\left(\frac{1}{41}+\frac{1}{42}+................+\frac{1}{60}\right)\)+\(\left(\frac{1}{61}+\frac{1}{62}+..........................+\frac{1}{80}\right)\)

                 Có 20 số hạng                                                         Có 20 số hạng

\(>\left(\frac{1}{60}+\frac{1}{60}+................+\frac{1}{60}\right)+\left(\frac{1}{80}+\frac{1}{80}+..........+\frac{1}{80}\right)\)

                     Có 20 số hạng                                                Có 20 số hạng

=>\(y>20.\frac{1}{60}+20.\frac{1}{80}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

Vậy \(y>\frac{7}{12}\)

Chúc bn học tốt

Khách vãng lai đã xóa