\(\frac{1}{40\times41}+\frac{1}{41\times42}+\frac{1}{42\times43}+\frac{1}{43\times44}=\)
tính tổng
\(A=\frac{4}{7\times31}+\frac{6}{7\times41}+\frac{9}{10\times41}+\frac{7}{10\times57}\)
\(B=\frac{7}{19\times31}+\frac{5}{19\times43}+\frac{3}{23\times43}+\frac{7}{10\times57}\)
Cho
A= \(\frac{4}{31\times7}+\frac{6}{7\times41}+\frac{9}{10\times41}+\frac{7}{10\times57}\)
B= \(\frac{7}{19\times31}+\frac{5}{19\times43}+\frac{3}{13\times43}+\frac{11}{23\times57}\)
Tính \(\frac{A}{B}\)
LM ƠN GIÚP TỚ NHÉ, TỚ CẦN GẤP LẮM, TỚ SẼ TIK CHO!!!!!!!
chứng tỏ rằng :\(\frac{1}{8}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{41}+\frac{1}{42}+\frac{1}{43}< \frac{1}{2}\)
Đặt vế trái của Bất đẳng thức la A
\(A< \frac{1}{8}+\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+\frac{1}{40}+\frac{1}{40}+\frac{1}{40}.\)
\(A< \frac{1}{8}+\frac{3}{10}+\frac{3}{40}=\frac{3}{10}< \frac{5}{10}=\frac{1}{2}\)
Ta thấy: \(\frac{1}{8}< \frac{1}{2}\)
\(\frac{1}{11}< \frac{1}{2}\)
\(\frac{1}{12}< \frac{1}{2}\)
\(\frac{1}{13}< \frac{1}{2}\)
\(\frac{1}{41}< \frac{1}{2}\)
\(\frac{1}{42}< \frac{1}{2}\)
\(\frac{1}{43}< \frac{1}{2}\)
=> \(\frac{1}{8}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{41}+\frac{1}{42}+\frac{1}{43}< \frac{1}{2}\)
Chứng tỏ rằng: \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
Nhận xét : Từ \(\frac{1}{41}\rightarrow\frac{1}{80}\)có 40 phân số . Gọi tổng các phân số đó là A.Ta có thể nhóm các phân số thành hai nhóm rồi so sánh các phân số có tử giống nhau.
Ta có : \(A=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}\)
\(=\left[\frac{1}{41}+\frac{1}{42}+...+\frac{1}{59}+\frac{1}{60}\right]+\left[\frac{1}{61}+\frac{1}{62}+...+\frac{1}{79}+\frac{1}{80}\right]\)
Vì \(\frac{1}{41}>\frac{1}{42}>...>\frac{1}{60}>\frac{1}{61}>...>\frac{1}{80}\) nên \(A>\left[\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}+\frac{1}{60}\right]+\left[\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}+\frac{1}{80}\right]\)
\(A>\frac{20}{80}+\frac{20}{80}=\frac{1}{3}+\frac{1}{4}=\frac{4+3}{12}=\frac{7}{12}\)
Vậy : \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
Ta có: 7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12
=> ĐPCM ( ĐPCM có nghĩa là điều phải chứng minh)
~ Học tốt ~ K cho mk nhé! Thank you.
#)Giải :
\(A=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}\)
\(A=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)\)
Ta có : \(\frac{1}{41}>\frac{1}{60};\frac{1}{42}>\frac{1}{60};...;\frac{1}{59}>\frac{1}{60}\)
\(\Rightarrow\frac{1}{41}+\frac{1}{42}+...\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{20}{60}=\frac{1}{3}\left(1\right)\)
Lại có : \(\frac{1}{61}>\frac{1}{81};\frac{1}{62};>\frac{1}{80};...;\frac{1}{79}>\frac{1}{80}\)
\(\Rightarrow\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}=\frac{20}{80}=\frac{1}{4}\left(2\right)\)
Cộng (1) và (2) ta được :
\(A>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\left(đpcm\right)\)
#~Will~be~Pens~#
CHỨNG TỎ
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+......+\frac{1}{99}+\frac{1}{100}>\frac{7}{10}\)
(1/41+1/42+1/43+...+1/50)+(1/51+1/52+...+1/100)
1/41+1/42+...+1/50 > 1/50+1/50+...+1/50 (10 số hạng)
=1+1+...+1/50=10/50=1/5
1/51+1/52+...+1/100 > 1/100+1/100+1/100 (50 số hạng)
=1+1+...+1/100=50/100=1/2
=> 1/41+1/42+1/43+...+1/99+1/100> 1/5 +1/2=7/10
Cm: \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
CMR: \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{ }{ }\)7/12
CMR:
\(\frac{7}{12}< \frac{1}{41}+\frac{1}{42}+\frac{1}{43}+.........+\frac{1}{79}+\frac{1}{80}< \frac{5}{6}\)
Đặt \(A=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}\)
\(A>\frac{1}{80}+\frac{1}{80}+....+\frac{1}{80}\)
\(\frac{1}{80}+\frac{1}{80}+.....+\frac{1}{80}\\ =\frac{40}{80}=\frac{1}{2}\)
Vì \(\frac{1}{2}< \frac{5}{6}\\ =>A< \frac{5}{6}\)
\(A< \frac{1}{40}+\frac{1}{40}+.....+\frac{1}{40}\)
\(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\\ =\frac{40}{40}=1\)
Vì \(1>\frac{7}{12}\\ =>A>\frac{7}{12}\)
bài này đề có vấn để
Chứng tỏ rằng :\(y=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
bn vào các câu hỏi tương tự là sẽ thấy mấy câu y chang câu của bn thôi
Ta có :
\(\frac{1}{41}>\frac{1}{60};\frac{1}{42}>\frac{1}{60};\frac{1}{43}>\frac{1}{60};....;\frac{1}{60}=\frac{1}{60}\)
\(\Rightarrow\frac{1}{41}+\frac{1}{42}+....+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=20.\frac{1}{60}=\frac{1}{3}\)(1)
\(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};\frac{1}{63}>\frac{1}{80};....;\frac{1}{80}=\frac{1}{80}\)
\(\Rightarrow\frac{1}{61}+\frac{1}{62}+....+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+....+\frac{1}{80}=20.\frac{1}{80}=\frac{1}{4}\)(2)
Từ (1) và (2) \(\Rightarrow y=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+....+\frac{1}{80}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)(đpvm)
y=\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...........................+\frac{1}{79}+\frac{1}{80}\)(có 80 số hạng)
=>y=\(\left(\frac{1}{41}+\frac{1}{42}+................+\frac{1}{60}\right)\)+\(\left(\frac{1}{61}+\frac{1}{62}+..........................+\frac{1}{80}\right)\)
Có 20 số hạng Có 20 số hạng
\(>\left(\frac{1}{60}+\frac{1}{60}+................+\frac{1}{60}\right)+\left(\frac{1}{80}+\frac{1}{80}+..........+\frac{1}{80}\right)\)
Có 20 số hạng Có 20 số hạng
=>\(y>20.\frac{1}{60}+20.\frac{1}{80}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
Vậy \(y>\frac{7}{12}\)
Chúc bn học tốt