Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhâm Thị Ngọc Mai
Xem chi tiết
Đặng Thanh Quang
Xem chi tiết
tran thu ha
Xem chi tiết
alibaba nguyễn
5 tháng 5 2017 lúc 19:20

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

Cô Hoàng Huyền
6 tháng 5 2017 lúc 11:00

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

Vũ Tường Minh
5 tháng 5 2017 lúc 18:00

BALABOLO

TK NHA

Prissy
Xem chi tiết
Đặng Ngọc Quỳnh
2 tháng 10 2020 lúc 23:08

ĐK: \(x\ge\frac{1}{3}\)

Pt đã cho tương đương với \(\left(18x^2-2x-\frac{8}{3}\right)+9\left(\sqrt{x-\frac{1}{3}}-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\left(18x-8\right)\left(x+\frac{1}{3}\right)+9\frac{x-\frac{1}{3}-\frac{1}{9}}{\sqrt{x-\frac{1}{3}}+\frac{1}{3}}=0\)

\(\Leftrightarrow\left(x-\frac{4}{9}\right)\text{[}18\left(x+\frac{1}{3}\right)+9\frac{1}{\sqrt{x-\frac{1}{3}}+\frac{1}{2}}\text{]}=0\Rightarrow x=\frac{4}{9}\)

CM: Với \(x\ge\frac{1}{3}\Rightarrow18\left(x+\frac{1}{3}\right)+9\frac{1}{\sqrt{x-\frac{1}{3}}+\frac{1}{3}}>0\)

Pt đã cho có nghiệm \(x=\frac{4}{9}\)

Khách vãng lai đã xóa
Angela jolie
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 9 2019 lúc 20:15

ĐKXĐ: \(x\ne0\)

\(\Leftrightarrow\frac{2x^2+9}{x^2}+\frac{2x}{\sqrt{2x^2+9}}-3=0\)

Đặt \(\frac{x}{\sqrt{2x^2+9}}=a\Rightarrow\frac{2x^2+9}{x^2}=\frac{1}{a^2}\)

\(\frac{1}{a^2}+2a-3=0\)

\(\Leftrightarrow2a^3-3a^2+1=0\)

\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\sqrt{2x^2+9}\left(x>0\right)\\-2x=\sqrt{2x^2+9}\left(x< 0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2=2x^2+9\left(vn\right)\\2x^2=9\end{matrix}\right.\) \(\Rightarrow x=\frac{-3\sqrt{2}}{2}\)

Xem chi tiết
Lightning Farron
31 tháng 12 2017 lúc 21:09

\(\dfrac{9}{x^2}+\dfrac{2x}{\sqrt{2x^2+9}}-1=0\)

\(\Leftrightarrow\dfrac{9}{x^2}-2+\dfrac{2x}{\sqrt{2x^2+9}}+1=0\)

\(\Leftrightarrow\dfrac{-\left(2x^2-9\right)}{x^2}+\dfrac{\dfrac{2x^2-9}{2x^2+9}}{\dfrac{2x}{\sqrt{2x^2+9}}-1}=0\)

\(\Leftrightarrow\left(2x^2-9\right)\left(\dfrac{\dfrac{1}{2x^2+9}}{\dfrac{2x}{\sqrt{2x^2+9}}-1}-\dfrac{1}{x^2}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x^2=9\\\dfrac{\dfrac{1}{2x^2+9}}{\dfrac{2x}{\sqrt{2x^2+9}-1}}=\dfrac{1}{x^2}\end{matrix}\right.\)\(\Rightarrow x=-\dfrac{3}{\sqrt{2}}\) (thỏa)

luyen hong dung
Xem chi tiết
Nguyễn Linh Chi
5 tháng 7 2019 lúc 9:05

\(ĐK:x\ge\frac{3}{2}\)

Đặt : \(\sqrt{4x^2+9}=a;\sqrt{2x-3}=b\); a lớn hơn  0; b lớn hơn hoặc bằng 0

ta có: \(a^2-b^2=4x^2+9-2x+3=2\left(2x^2-x+6\right)\)

Ta có phương trình:

\(\frac{a^2-b^2}{2x}=a+b\Leftrightarrow\frac{\left(a-b\right)\left(a+b\right)}{2x}=a+b\)

mà a+b lớn hơn 0

phương trình trên <=> \(\frac{a-b}{2x}=1\Leftrightarrow a-b=2x\)( chia hai vế cho a+b)

Khi đó ta có phương trình ẩn x

\(\sqrt{4x^2+9}-\sqrt{2x-3}=2x\)

=> \(4x^2+9+2x-3-2\sqrt{\left(4x^2+9\right)\left(2x-3\right)}=4x^2\)

<=> \(3+x=\sqrt{8x^3-12x^2+18x-27}\)

<=> \(8x^3-13x^2+12x-36=0\)

<=> \(\left(x-2\right)\left(8x^2+3x+18\right)\)=0

<=> x=2  (tmđk)

thử lại vào phương trình ban đầu thấy thỏa mãn

Vậy x=2

Hỏi Làm Gì
Xem chi tiết
Hoàng Lê Bảo Ngọc
28 tháng 9 2016 lúc 11:29

Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) ta có 

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2\)

Hoàng Lê Bảo Ngọc
28 tháng 9 2016 lúc 11:25

Bài 1. Đặt \(a=\sqrt{x+3},b=\sqrt{x+7}\)

\(\Rightarrow a.b+6=3a+2b\) và \(b^2-a^2=4\)

Từ đó tính được a và b

Bài 2. \(\frac{2x-1}{x^2}+\frac{y-1}{y^2}+\frac{6z-9}{z^2}=\frac{9}{4}\)

\(\Leftrightarrow\frac{2}{x}-\frac{1}{x^2}+\frac{1}{y}-\frac{1}{y^2}+\frac{6}{z}-\frac{9}{z^2}-\frac{9}{4}=0\)

Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\)

Ta có \(2a-a^2+b-b^2+6c-9c^2-\frac{9}{4}=0\)

\(\Leftrightarrow-\left(a^2-2a+1\right)-\left(b^2-b+\frac{1}{4}\right)-\left(9c^2-6c+1\right)=0\)

\(\Leftrightarrow-\left(a-1\right)^2-\left(b-\frac{1}{2}\right)^2-\left(3c-1\right)^2=0\)

Áp dụng tính chất bất đẳng thức suy ra a = 1 , b = 1/2 , c = 1/3

Rồi từ đó tìm được x,y,z

Liên Linh
Xem chi tiết
hung le
17 tháng 12 2019 lúc 12:17

bạn lên app QuandA hỏi nha, gia sư sẽ cho bạn đáp án chính xác

Khách vãng lai đã xóa
Nyatmax
17 tháng 12 2019 lúc 20:12

\(DK:x\in\left(-\frac{1}{4};4\right)\)

PT\(\Leftrightarrow\frac{1}{4}\sqrt{4-x}+\frac{1}{\sqrt{4-x}}+2\sqrt{4x+1}+\frac{2}{\sqrt{4x+1}}+\frac{7}{4}\sqrt{4-x}-\sqrt{4x+1}=\frac{15}{2}\)

Ta co:

\(\frac{1}{4}\sqrt{4-x}+\frac{1}{\sqrt{4-x}}\ge^{ }1\left(1\right)\)

\(2\sqrt{4x+1}+\frac{2}{\sqrt{4x+1}}\ge4\left(2\right)\)

Dau '=' xay ra khi \(x=0\)

Xet

\(\frac{7}{4}\sqrt{4-x}-\sqrt{4x+1}=\frac{5}{2}\left(3\right)\)

\(\Leftrightarrow\frac{-\frac{7}{4}x}{\sqrt{4-x}+2}-\frac{4x}{\sqrt{4x+1}+1}=0\)

\(\Leftrightarrow x\left(\frac{7}{4\sqrt{4-x}+8}+\frac{4}{\sqrt{4x+1}+1}\right)=0\)

\(\Leftrightarrow x=0\left(n\right)\)

Tuc la \(\left(3\right)\)đúng khi \(x=0\) \(\left(4\right)\)

\(\left(1\right),\left(2\right),\left(4\right)\Rightarrow VT\ge\frac{15}{2}=VP\)

Khi \(x=0\)

Khách vãng lai đã xóa