giai pt x^2+5x+1=(x+5)\(\sqrt{x^2+1}\)
Giai pt \(a,4\sqrt{x+1}=x^2+5x+4\)
\(b,\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
\(c,2x^2-5x+5=\sqrt{5x-1}\)
a/ Dặt \(\sqrt{x+1}=a\ge0\)
\(\Rightarrow4\sqrt{x+1}=x^2+5x+4\)
\(\Leftrightarrow4\sqrt{x+1}=\left(x+1\right)^2+3\left(x+1\right)\)
\(\Leftrightarrow4a=a^4+3a^2\)
\(\Leftrightarrow a\left(a-1\right)\left(a^2+a+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+1}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
b/ Đặt \(\hept{\begin{cases}\sqrt{4x+1}=a\ge0\\\sqrt{3x-2}=b\ge0\end{cases}}\)
\(\Rightarrow a^2-b^2=x+3\)
Từ đây ta có:
\(a-b=\frac{a^2-b^2}{5}\)
\(\Leftrightarrow\left(a-b\right)\left(5-a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\left(1\right)\\a+b=5\left(2\right)\end{cases}}\)
Thế vô làm tiếp
c/
\(2x^2-5x+5=\sqrt{5x-1}\)
\(\Leftrightarrow\left(2x^2-5x+5\right)^2=5x-1\)
\(\Leftrightarrow4x^4-20x^3+45x^2-55x+26=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(4x^2-8x+13\right)=0\)
Làm nốt
giai pt sau
\(\sqrt{3x-1}-\sqrt{x+2}.\sqrt{3x^2+7x+2}+4=4x-2\)
\(x^2-5x+3.\sqrt{2x-1}=2.\sqrt{14-2x}+5\)
\(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
nhiều thế giải ko đổi đâu bạn
đkxđ : \(\frac{1}{2}\le x\le7\)
\(x^2-5x+3\sqrt{2x-1}=2\sqrt{14-2x}+5\)
\(\Leftrightarrow\left(x^2-5x\right)+3\left(\sqrt{2x-1}-3\right)=2\left(\sqrt{14-2x}-2\right)\)
\(\Leftrightarrow x\left(x-5\right)+\frac{3.\left(2x-10\right)}{\sqrt{2x-1}+3}+\frac{2.\left(2x-10\right)}{\sqrt{14-2x}+2}=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+\frac{6}{\sqrt{2x-1}+3}+\frac{4}{\sqrt{14-2x}+2}\right)=0\)
\(\Leftrightarrow x=5\)
còn bài a,c lười đánh lắm
giai pt: \(5x+19=2\sqrt{x-1}+4\sqrt{x+2}+6\sqrt{2x+5}\)
Giai pt:
a. \(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)
b. \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)
a/ ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1}=\sqrt{5x-1}+\sqrt{3x-2}\)
\(\Leftrightarrow x-1=8x-3+2\sqrt{\left(5x-1\right)\left(3x-2\right)}\)
\(\Leftrightarrow2-7x=2\sqrt{\left(5x-1\right)\left(3x-2\right)}\)
Do \(x\ge1\Rightarrow2-7x< 0\Rightarrow\left\{{}\begin{matrix}VP\ge0\\VT< 0\end{matrix}\right.\)
Phương trình vô nghiệm
b/ ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|=2\)
Mà \(\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+1+1-\sqrt{x-1}\right|=2\)
Dấu "=" xảy ra khi và chỉ khi \(1-\sqrt{x-1}\ge0\Rightarrow x\le2\Rightarrow1\le x\le2\)
Vậy nghiệm của pt là \(1\le x\le2\)
Giai pt \(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x+1\)
ĐK : \(2\le x\le4\)
pt <=> \(\sqrt{x-2}+\sqrt{4-x}-\left(2x^2-5x+1\right)=0\)
\(\Leftrightarrow\sqrt{x-2}-1+\sqrt{4-x}-1-\left(2x^2-5x+3\right)=0\)
\(\Leftrightarrow\frac{x-3}{\sqrt{x-2}+1}+\frac{3-x}{\sqrt{4-x}+1}-\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[\frac{1}{\sqrt{x-2}+1}-\frac{1}{\sqrt{4-x}+1}-\left(2x+1\right)\right]=0\)
TH1 : x - 3 = 0 <=> x = 3 ( tmđk )
TH2 : \(\frac{1}{\sqrt{x-2}+1}-\frac{1}{\sqrt{4-x}+1}-\left(2x+1\right)=0\)( tự xử lý nhe == , vô nghiệm á )
Vậy pt có nghiệm duy nhất là x = 3
Giai các PT sau
a, \(x=\sqrt{2-x}.\sqrt{3-x}+\sqrt{3-x}.\sqrt{5-x}+\sqrt{2-x}.\sqrt{5-x}\)
b, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
c, \(\sqrt{4x+1}+\sqrt{2x^2+x+39}=10\)
Giai các PT sau
a, \(x=\sqrt{2-x}.\sqrt{3-x}+\sqrt{3-x}.\sqrt{5-x}+\sqrt{2-x}.\sqrt{5-x}\)
b, \(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
c, \(\sqrt{4x+1}+\sqrt{2x^2+x+39}=10\)
Giai he pt: \(\left\{{}\begin{matrix}\left(x-y\right)^2+4=3y-5x+2\sqrt{\left(x+1\right)\left(y-1\right)}\\\frac{3xy-5y-6x+11}{\sqrt{x^3+1}}=5\end{matrix}\right.\)
Bài 1 Giai pt
\(a,2x^2+2x+1=\sqrt{4x+1}\)
\(b,x^2-6x+26=6\sqrt{2x+1}\)
\(c,4\sqrt{x+1}=x^2-5x+4\)
\(d,x^2+2015x-2014=2\sqrt{2017x-2016}\)
\(e,\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
\(f,2x^2-5x+5=\sqrt{5x-1}\)
Ko chắc nhá, lúc làm chả biết có tính nhầm chỗ nào ko nữa:) Vả lại bài này chưa khảo lại bài đâu đấy, lười khảo lại lắm, đăng lên luôn.
a) ĐK: \(x\ge-\frac{1}{4}\)
PT \(\Leftrightarrow4x^2+4x+1-2\sqrt{4x+1}+1=0\)
\(\Leftrightarrow4x^2+\left(\sqrt{4x+1}-1\right)^2=0\)
b) ĐK: \(x\ge-\frac{1}{2}\)
PT \(\Leftrightarrow\left(x^2-8x+16\right)+2x+1-6\sqrt{2x+1}+9=0\)
\(\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{2x+1}-3\right)^2=0\)
c) ĐK: \(x\ge-1\)
PT có một nghiệm xấu @@ chưa nghĩ ra, có lẽ phải dùng liên hợp.
d) Số bự quá:( Nhưng thôi vì nghiệm đẹp nên vẫn làm:D
\(PT\Leftrightarrow\left(x^2-2x+1\right)+\left(2017x-2016-2\sqrt{2017x-2016}+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)
e)Nghiệm đẹp nhưng dạng phân thức -> ko muốn làm:D
f) Liên hợp đi cho nó khỏe:v
f) Liên hợp đi cho nó khỏe:D
ĐK: \(x\ge\frac{1}{5}\)
PT \(\Leftrightarrow2x^2-6x+4+\left(x+1\right)-\sqrt{5x-1}=0\)
\(\Leftrightarrow2\left(x-2\right)\left(x-1\right)+\frac{\left(x-2\right)\left(x-1\right)}{x+1+\sqrt{5x-1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left[2+\frac{1}{x+1+\sqrt{5x-1}}\right]=0\)
Cái ngoặc to nhìn liếc qua một phát cũng thấy nó vô nghiệm.