Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
titanic
Xem chi tiết
Trúc Mai Huỳnh
Xem chi tiết
Pham Van Hung
7 tháng 11 2018 lúc 23:03

Phương trình đề bài cho tương đương:    

      \(\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Rightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Rightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

\(\Rightarrow x+y+2=0\) (thừa số thứ 2 luôn > 0)

\(\Rightarrow x+y=-2\)

Ta có: \(\left(x+y\right)^2\ge4xy\)

\(\Rightarrow\left(-2\right)^2\ge4xy\Rightarrow xy\le1\)

Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\le-\frac{2}{1}=-2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\x+y=-2\end{cases}\Rightarrow x=y=-1}\)

Trúc Mai Huỳnh
7 tháng 11 2018 lúc 23:16

Bạn ơi tại sao: \(\left(x+y+z\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Trúc Mai Huỳnh
7 tháng 11 2018 lúc 23:19

Ý mình là vì sao ra cái đó á bạn^^

tuấn anh lê
Xem chi tiết
tuấn anh lê
14 tháng 3 2018 lúc 16:11

mk nhầm nhé xy khác o

Trần Thùy
Xem chi tiết
Đỗ Thủy
Xem chi tiết
Trần Văn Tú
Xem chi tiết
Diệp Vũ Ngọc
Xem chi tiết
Nguyễn Thị Ngọc Thơ
27 tháng 3 2019 lúc 22:01

Với \(x,y>0\). Áp dụng BĐT AM-GM, ta có:

\(x^4+y^2\ge2x^2y\)

\(\Rightarrow x^4+y^2+2xy^2\ge2x^2y+2xy^2=2xy\left(x+y\right)\)

\(\Rightarrow\frac{1}{x^4+y^2+2xy^2}\le\frac{1}{2xy\left(x+y\right)}\)(đpcm)

Thái Dương Cấn
Xem chi tiết
trần xuân quyến
Xem chi tiết