Giải pt: Giải pt: ( x-2)^4 - x^4 = y^3
giải pt: x^5 + 2x^4 +3x^3 + 3x^2 + 2x +1=0
giải pt: x^4 + 3x^3 - 2x^2 +x - 3=0
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
Dùng cách giải pt bậc 2 một ẩn, pt đẳng cấp 2 biến và hệ thức vi-et
Mọi người giải giúp vài bài này nhé
Giải nhanh nha, thanks nhiều
1. Tìm nghiệm nguyên của pt:7(x+y)=3(x2-xy+y2)
2. Tìm GTNN của A=\(\dfrac{2x^2-4x+5}{x^2+1}\)
3. Giải pt: x2+2x-3=\(\sqrt{-28x-7}\)
4. Giải pt: \(\sqrt{2x^2+x+6}+\sqrt{x^2+x+2}=x+\dfrac{4}{x}\)
Giúp em với ạ
Bài 1 giải và biện luận hệ pt :(m^2-4)x^2+2(m+2)x+1=0
Bài 2 giải hệ pt a) x^4+y^4=17.
x^2+y^2+xy=3
B) x^2/y+y^2/x=18.
x+y=12
Ta có:
$p^2=5q^2+4$ chia 5 dư 4 suy ra $p=5k+2(k\in \mathbb{N}^*)$
Ta có:
$(5k+2)^2=5q^2+4\Leftrightarrow 5k^2+4k=q^2\Rightarrow q^2\vdots k$
Mặt khác q là số nguyên tố và $q>k$ nên $k=1$. Thay vào ta được $p=7,q=3$
Bài 2:
\( \left\{ \begin{array}{l} \dfrac{{{x^2}}}{y} + \dfrac{{{y^2}}}{x} = 18\\ x + y = 12 \Rightarrow y = 12 - x \end{array} \right.\left( {x \ne 0,y \ne 0} \right)\\ \dfrac{{{x^2}}}{{12 - x}} + \dfrac{{{{\left( {12 - x} \right)}^2}}}{x} = 18\\ \Leftrightarrow {x^2} - 12x + 32 = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 4\\ x = 8 \end{array} \right. \)
Với \(x=4\) \(\Rightarrow y=12-4=8\)
Với \(x=8\) \(\Rightarrow y=12-8=4\)
Vậy nghiệm hệ phương trình \(\left(4;8\right),\left(8;4\right)\)
giải pt nghiệm nguyên dương sau :3(x^4+y^4+x^2+y^2+2)=2(x^2-x+1)(y^2-y+1)
đặt 2 cái trong ngoặc kia là a và b, phân tích đa thức thành nhân tử ở VT
rồi chuyển sang cứ tạo thành hhằng đẳng thức rồi nhóm các nhân tử còn lại chia thành 2 nhóm và úc đó thay a,b theo x, y vào ,...
Giải các hệ pt và các pt sau:
1. (x+1)(y-1)=xy+4 (1)
(2x-4)(y+1)=2xy+5(2)
2. \(x^2+x-2\sqrt{x^2+x+1}+2=0\)
1.
HPT \(\left\{\begin{matrix} (x+1)(y-1)=xy+4\\ (2x-4)(y+1)=2xy+5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy-x+y-1=xy+4\\ 2xy+2x-4y-4=2xy+5\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} -x+y=5\\ 2x-4y=9\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x=\frac{-29}{2}\\ y=\frac{-19}{2}\end{matrix}\right.\)
Vậy.............
2.
ĐKXĐ: $x\in\mathbb{R}$
$x^2+x-2\sqrt{x^2+x+1}+2=0$
$\Leftrightarrow (x^2+x+1)-2\sqrt{x^2+x+1}+1=0$
$\Leftrightarrow (\sqrt{x^2+x+1}-1)^2=0$
$\Rightarrow \sqrt{x^2+x+1}=1$
$\Rightarrow x^2+x=0$
$\Leftrightarrow x(x+1)=0$
$\Rightarrow x=0$ hoặc $x=-1$
Giải PT: \(\sqrt{x+y-4}+\sqrt{x-y+4}+\sqrt{-x+y+4}=\sqrt{x}+\sqrt{y}+2\)
Giải PT: \(\sqrt{x+y-4}+\sqrt{x-y+4}+\sqrt{-x+y+4}=\sqrt{x}+\sqrt{y}+2\)
Giải PT :
\(\sqrt{x+y-4}+\sqrt{x-y+4}+\sqrt{-x+y+4}=\sqrt{x}+\sqrt{y}+2\)
Giải hệ PT :\(\left\{{}\begin{matrix}\sqrt{x+y}+\sqrt{x-y}=4\\x^2+y^2=128\end{matrix}\right.\)
Giải PT : \(\left(x^2-4x+11\right)\left(x^4-8x^2+21\right)=35\)
Bài 1:
ĐK:...........
PT\((1)\Rightarrow x+y+2\sqrt{(x+y)(x-y)}+x-y=16\) (bình phương 2 vế)
\(\Leftrightarrow x+\sqrt{x^2-y^2}=8\)
\(\Leftrightarrow \sqrt{x^2-y^2}=8-x\Rightarrow \left\{\begin{matrix} 8-x\geq 0\\ x^2-y^2=(8-x)^2=x^2-16x+64\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\leq 8\\ y^2=16x-64\end{matrix}\right.\)
Thay vào PT(2) ta có:
\(x^2+16x-64=128\)
\(\Leftrightarrow x^2+16x-192=0\Rightarrow \left[\begin{matrix} x=8\\ x=-24\end{matrix}\right.\)
Nếu \(x=8\Rightarrow y^2=16x-64=64\Rightarrow y=\pm 8\) (thỏa mãn)
Nếu $x=-24\Rightarrow y^2=16x-64< 0$ (vô lý-loại)
Vậy $(x,y)=(8,\pm 8)$
Bài 2:
Ta thấy:
\(x^2-4x+11=(x^2-4x+4)+7=(x-2)^2+7\geq 0, \forall x\)
\(x^4-8x^2+21=(x^4-8x^2+16)+5=(x^2-4)^2+5\geq 5, \forall x\)
Do đó:
\((x^2-4x+11)(x^4-8x^2+21)\geq 7.5=35\)
Dấu "=" xảy ra khi \((x-2)^2=(x^2-4)^2=0\Leftrightarrow x=2\)
Vậy.......