\(\sqrt{4n+1}-\sqrt{4n}>\frac{1}{\sqrt{n+1}}\)
lim
\(lim\frac{\sqrt{4n^2+1}+2n-1}{\sqrt{n^2+4n+1}+n}\)
\(lim\frac{\sqrt{4n^2+1}+2n-1}{\sqrt{n^2+4n+1}+n}\)
= \(lim\frac{\sqrt{4+\frac{1}{n^2}}+2-\frac{1}{n}}{\sqrt{1+\frac{4}{n}+\frac{1}{n^2}}+1}\)
=\(\frac{2+2}{1+1}=2\)
Giúp mình giải với
a) lim \(\frac{\sqrt{n^2-4n}-\sqrt{4n+1}}{\sqrt{3n^2+1}+n}\)
b)lim \(\frac{\sqrt[3]{8n^3+n^2}-n}{2n-3}\)
a)lim \(\frac{\sqrt{n^2-4n}-\sqrt{4n+1}}{\sqrt{3n^2+1}+n}\)
=lim \(\frac{\sqrt{1-\frac{4}{n}}-\sqrt{\frac{4}{n}+\frac{1}{n^2}}}{\sqrt{3+\frac{1}{n^2}}+1}=\frac{1}{\sqrt{3}+1}\)
b)lim \(\frac{\sqrt[3]{8n^3+n^2}-n}{2n-3}\)
= lim \(\frac{\sqrt[3]{8+\frac{1}{n^3}}-1}{2-\frac{3}{n}}=\frac{2-1}{2}=\frac{1}{2}\)
Tính các giới hạn sau:
\(lim\sqrt{n}\left(\sqrt{n+1}-n\right)\)
\(lim\dfrac{\sqrt{4n^2+1}+2n-1}{\sqrt{n^2+4n+1}+n}\)
\(\lim\limits\dfrac{\sqrt{4n^2+1}+2n-1}{\sqrt{n^2+4n+1}+n}\)
\(=\lim\limits\dfrac{\sqrt{4+\dfrac{1}{n^2}}+2-\dfrac{1}{n}}{\sqrt{1+\dfrac{4}{n}+\dfrac{1}{n^2}}+1}=\dfrac{2+2}{1+1}=\dfrac{4}{2}=2\)
\(\lim\limits\left[\sqrt{n}\left(\sqrt{n+1}-n\right)\right]\)
\(=\lim\limits\left[\sqrt{n^2+n}-\sqrt{n^3}\right]\)
\(=\lim\limits\dfrac{n^2+n-n^3}{\sqrt{n^2+n}+\sqrt{n^3}}\)
\(=\lim\limits\dfrac{n^3\left(-1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}{\sqrt{n^3\left(\dfrac{1}{n}+\dfrac{1}{n^2}\right)}+\sqrt{n^3}}\)
\(=\lim\limits\dfrac{n^3\left(-1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}{\sqrt{n^3}\left(\sqrt{\dfrac{1}{n}+\dfrac{1}{n^2}}+1\right)}\)
\(=\lim\limits\dfrac{n\sqrt{n}\left(-1+\dfrac{1}{n}+\dfrac{1}{n^2}\right)}{\sqrt{\dfrac{1}{n}+\dfrac{1}{n^2}}+1}\)
\(=-\infty\) vì \(\left\{{}\begin{matrix}lim\left(n\sqrt{n}\right)=+\infty\\lim\left(\dfrac{-1+\dfrac{1}{n}+\dfrac{1}{n^2}}{\sqrt{\dfrac{1}{n}+\dfrac{1}{n^2}}+1}\right)=-\dfrac{1}{1}=-1< 0\end{matrix}\right.\)
Giúp mk lm bài này nha mấy bạn: Cho f(n)=\(\frac{4n+\sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt{2n-1}}\) với n nguyên dương. Hãy tính giá trị của tổng: f(1)+f(2)+f(3)+..........+f(40)
Cho \(S_n=\frac{4n+\sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt{2n-1}}\)Chứng minh rằng: \(S_1+S_2+...+S_{40}\in Z\)
Giải:
Ta có :
\(Sn=\frac{4n+\sqrt{\left(2n+1\right)\left(2n-1\right)}}{\sqrt{2n+1}+\sqrt{2n-1}}\)
\(=\frac{\left(\sqrt{2n+1}-\sqrt{2n-1}\right)\left[\left(2n-1\right)+\left(2n+1\right)+\sqrt{\left(2n+1\right)\left(2n-1\right)}\right]}{\left(\sqrt{2n+1}+\sqrt{2n-1}\right)\left(\sqrt{2n+1}-\sqrt{2n-1}\right)}.\)
\(=\frac{\left(\sqrt{2n+1}\right)^3-\left(\sqrt{2n-1}\right)^3}{2}\)
Tương tự =>\(S_1+S_2+...+S_{40}=\frac{\left(\sqrt{2n_1+1}\right)^3+\sqrt{2n_{40}+1}^3}{2}\)
Sau đó thì dễ rồi ha
Cái đề thấy sai sai. You xem lại thử nhé
Cho \(f\left(n\right)=\dfrac{4n+\sqrt{4n^2-1}}{\sqrt{2n+1}+\sqrt[]{2n-1}}\) với n nguyên dương. Tính \(f\left(1\right)+f\left(2\right)+...+f\left(40\right)\).
\(f\left(n\right)=\dfrac{2n-1+2n+1+\sqrt{\left(2n+1\right)\left(2n+1\right)}}{\sqrt{2n+1}+\sqrt{2n-1}}\\ f\left(n\right)=\dfrac{\left(\sqrt{2n+1}-\sqrt{2n-1}\right)\left(2n-1+2n+1+\sqrt{\left(2n+1\right)\left(2n+1\right)}\right)}{2n+1-2n+1}\\ f\left(n\right)=\dfrac{\left(\sqrt{2n+1}\right)^3-\left(\sqrt{2n+1}\right)^3}{2}=\dfrac{\left(2n+1\right)\sqrt{2n+1}-\left(2n-1\right)\sqrt{2n+1}}{2}\)
\(\Leftrightarrow f\left(1\right)+f\left(2\right)+...+f\left(40\right)=\dfrac{3\sqrt{3}-1\sqrt{1}+5\sqrt{5}-3\sqrt{3}+...+81\sqrt{81}-79\sqrt{79}}{2}\\ =\dfrac{81\sqrt{81}-1\sqrt{1}}{2}=\dfrac{9^3-1}{2}=364\)
biết \(lim\dfrac{\sqrt{\left(3-4n\right)^2+1}+an-1}{\sqrt{n^2+4n+1}+an}=2\). tìm a
\(\lim\dfrac{\sqrt{\left(3-4n\right)^2+1}+an-1}{\sqrt{n^2+4n+1}+an}=\lim\dfrac{\sqrt{\left(\dfrac{3}{n}-4\right)^2+\dfrac{1}{n}}+a-\dfrac{1}{n}}{\sqrt{1+\dfrac{4}{n}+\dfrac{1}{n^2}}+an}\)
\(=\dfrac{4+a}{1+a}=2\Leftrightarrow4+a=2a+2\Rightarrow a=2\)
Tính các giới hạn sau
1,Lim\(\left(\dfrac{2n^3}{2n^2+3}+\dfrac{1-5n^2}{5n+1}\right)\)
2,a,Lim\(\left(\sqrt{n^2+n}-\sqrt{n^2+2}\right)\)
b,Lim\(\dfrac{\sqrt{n^4+3n-2}}{2n^2-n+3}\)
c,Lim\(\dfrac{\sqrt{n^2-4n}-\sqrt{4n^2+1}}{\sqrt{3n^2+1}-n}\)
\(a=\lim\left(\dfrac{2n^3\left(5n+1\right)+\left(2n^2+3\right)\left(1-5n^2\right)}{\left(2n^2+3\right)\left(5n+1\right)}\right)\)
\(=\lim\left(\dfrac{2n^3-13n^2+3}{\left(2n^2+3\right)\left(5n+1\right)}\right)=\lim\dfrac{2-\dfrac{13}{n}+\dfrac{3}{n^3}}{\left(2+\dfrac{3}{n^2}\right)\left(5+\dfrac{1}{n}\right)}=\dfrac{2}{2.5}=\dfrac{1}{5}\)
\(b=\lim\left(\dfrac{n-2}{\sqrt{n^2+n}+\sqrt{n^2+2}}\right)=\lim\dfrac{1-\dfrac{2}{n}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{1+\dfrac{2}{n}}}=\dfrac{1}{2}\)
\(c=\lim\dfrac{\sqrt{1+\dfrac{3}{n^3}-\dfrac{2}{n^4}}}{2-\dfrac{2}{n}+\dfrac{3}{n^2}}=\dfrac{1}{2}\)
\(d=\lim\dfrac{\sqrt{1-\dfrac{4}{n}}-\sqrt{4+\dfrac{1}{n^2}}}{\sqrt{3+\dfrac{1}{n^2}}-1}=\dfrac{1-2}{\sqrt{3}-1}=-\dfrac{1+\sqrt{3}}{2}\)
tìm giới hạn của dãy số:
\(lim\frac{\sqrt{n\sqrt{2n\sqrt{4n}}}}{n+1}\)
\(lim\frac{\sqrt{2n.n^{\frac{1}{2}}.n^{\frac{1}{4}}}}{n+1}=\frac{\sqrt{2}.n^{\frac{7}{8}}}{n+1}=\frac{\sqrt{2}}{n^{\frac{1}{8}}+\frac{1}{n^{\frac{7}{8}}}}=\frac{\sqrt{2}}{\infty}=0\)