Cm với mọi số nguyên dương n thì
\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}<\sqrt{\frac{n+1}{2}}\)
C/m với mọi n nguyên dương thì
\(\dfrac{1}{2\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+.....+\dfrac{1}{2n\sqrt{n+1}}+\dfrac{1}{\sqrt{n+1}}>1\)
Bài 1: CM với mọi số nguyên dương n thì \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{4\sqrt{3}}+.....+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Bài 2: CM với mọi số tự nhiên n>=2 đều có \(\sqrt{n}< \dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+.....+\dfrac{1}{\sqrt{n}}< 2\sqrt{n}\)
bai 1
(n+1)√n=√n^3+√n>2√(n^3.n)=2n^2>2(n^2-1)=2(n-1)(n+1)
1/[(n+1)√n]<1/[2(n-1)(n+1)]=1/4.[2/(n-1)(n+1)]
A=..
n =1 yes
n>1
A<1+1/4[2/1.3+2/3.5+..+2/(n-1)(n+1)
A<1+1/4[ 2-1/(n+1)]<1+1/2<2=>dpcm
Chứng minh rằng với mọi số nguyên dương n:
\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{n}\le\)\(n\sqrt{\frac{n+1}{2}}\)
BĐT đúng với n=2
giả sử BĐT đúng với n=k , tức là: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}< k\sqrt{\frac{k+1}{2}}\)
Ta phải chứng minh BĐT đúng vớới n=k+1:
\(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}< \left(k+1\right)\sqrt{\frac{k+2}{2}}\)
Ta thấy: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}< k\sqrt{\frac{k+1}{2}}+\sqrt{k+1}\)
Mà: \(k\sqrt{\frac{k+1}{2}}+\sqrt{k+1}< \left(k+1\right)\sqrt{\frac{k+2}{2}}\)(*)
Thậy vậy: (*)\(\Leftrightarrow\sqrt{k+1}\left(\frac{k}{\sqrt{2}}+1\right)< \left(k+1\right)\sqrt{\frac{k+2}{2}}\Leftrightarrow\frac{k}{\sqrt{2}}+1< \sqrt{k+1}\sqrt{\frac{k+2}{2}}\)
\(\Leftrightarrow\frac{k+\sqrt{2}}{\sqrt{2}}< \sqrt{k+1}\frac{\sqrt{k+2}}{\sqrt{2}}\Leftrightarrow k^2+2\sqrt{2k}+2< k^2+3k+2\)(luôn đúng)
Suy ra: \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...+\sqrt{k}+\sqrt{k+1}< \left(k+1\right)\sqrt{\frac{k+2}{2}}\)
hay \(\sqrt{1}+\sqrt{2}+\sqrt{3}+...\sqrt{n}< n\sqrt{\frac{n+1}{2}}\)
Mình cảm ơn bạn ạ!!
Chứng minh nếu \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{a+b+c}\) thì với mọi số nguyên dương lẻ n có \(\sqrt[n]{a}+\sqrt[n]{b}+\sqrt[n]{c}=\sqrt[n]{a+b+c}\)
Chứng minh với mọi n nguyên dương lớn hơn 1 ta có \(\sqrt{2\sqrt{3\sqrt{4\sqrt{5\sqrt{....\sqrt{\left(n-1\right)\sqrt{n}}}}}}}< 3\)
Chứng minh rằng với mọi số nguyên dương n ta đều có:
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+\frac{1}{5\sqrt{4}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Xét số hạng tổng quát ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)< \sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\sqrt{n}\cdot\frac{2}{\sqrt{n}}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)
Áp dụng vào bài tập, ta có:
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)
\(< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+...+\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)
\(=2-\frac{2}{\sqrt{n+1}}< 2\left(đpcm\right)\)
Chứng minh rằng vối mọi số nguyên dương n lớn hơn 1 ta có: \(\sqrt{2\sqrt{3\sqrt{4....\sqrt{\left(n-1\right)\sqrt{n}}}}}< 3\)
Chứng minh: \(|\frac{m}{n}-\sqrt{2}|\ge\frac{1}{n^2\left(\sqrt{3}+\sqrt{2}\right)}\) với mọi số nguyên dương m,n.
Chứng minh rằng: \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\) với mọi số nguyên dương n