Chứng minh rằng: \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
a. Chứng minh : \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b. Áp dụng : Tính giá trị của biểu thức :
\(M=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{25\sqrt{24}+24\sqrt{25}}\)
cảm ơn các bạn trước nhé!
a) Chứng minh: \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\) (với n \(\in\) N*)
b) Áp dụng cho S=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
Chứng minh 18<S<19
Giúp em với mấy anh chị ơiiiiiiiiiiii
1. c/m \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
2 c/m \(17< \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{100}}< 18\)
Đặt Sn=\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)
CMR : Sn<\(\frac{1}{2}\)
Đặt Sn= \(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{...1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)
CMR : Sn<\(\frac{1}{2}\)
Chứng minh rằng
\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=-2\)
b/\(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\) (với a>0 a#1
c/\(\frac{\sqrt{7+4\sqrt{3}}.\sqrt{19-8\sqrt{3}}}{4-\sqrt{3}}=2+\sqrt{3}\)
Mình rút gọn như thế này đúng không nhỉ?
\(P=\left(2-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1}{2x-\sqrt{x}-3}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(P=\left[\frac{2\left(2\sqrt{x}-3\right)}{2\sqrt{x}-3}-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right]:\left[\frac{6\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(2\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right]\)
\(P=\left(\frac{4\sqrt{x}-6}{2\sqrt{x}-3}-\frac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}+\frac{2x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)
\(P=\left(\frac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}\right):\left(\frac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\right)\)
\(P=\frac{3\sqrt{x}-5}{2\sqrt{x}-3}:\frac{2x+3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}\)
\(P=\frac{3\sqrt{x}-5}{2\sqrt{x}-3}.\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-3\right)}{2x+3\sqrt{x}+1}\)
\(P=\left(3\sqrt{x}-5\right).\frac{\left(\sqrt{x}+1\right)}{2x+3\sqrt{x}+1}\)
\(P=\frac{3x+3\sqrt{x}-5\sqrt{x}-5}{2x+3\sqrt{x}+1}\)
\(P=\frac{3x-5\sqrt{x}-5}{2x+1}\)
Bài 1 : Cho \(S=\frac{1}{3\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{1}{97\left(\sqrt{48}+\sqrt{49}\right)}\)
So sánh S với \(\frac{3}{7}\)