Lê Chí Cường

Chứng minh rằng: \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)

Hoàng Lê Bảo Ngọc
19 tháng 6 2016 lúc 13:05

Ta có : \(\frac{1}{\left(k+1\right)\sqrt{k}}=\frac{\sqrt{k}}{k\left(k+1\right)}=\sqrt{k}\left(\frac{1}{k\left(k+1\right)}\right)=\sqrt{k}\left(\frac{1}{k}-\frac{1}{k+1}\right)=\sqrt{k}\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\left(\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+}}\right)\)

\(=\left(1+\frac{\sqrt{k}}{\sqrt{k+1}}\right)\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)< 2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)

Áp dụng : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(1-\frac{1}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n+}}< 2\)

Vậy ta có điều phải chứng minh.

Bình luận (0)

Các câu hỏi tương tự
Huy vũ quang
Xem chi tiết
Nguyễn Ánh Tuyền
Xem chi tiết
Nguyễn Anh Khoa
Xem chi tiết
phan thị minh anh
Xem chi tiết
Lương Ngọc Anh
Xem chi tiết
Lương Ngọc Anh
Xem chi tiết
Trần Huỳnh Như
Xem chi tiết
Hải Nam Xiumin
Xem chi tiết
phan thị minh anh
Xem chi tiết