Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
phan thị minh anh

1. c/m \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)

2 c/m \(17< \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{100}}< 18\)

Hoàng Lê Bảo Ngọc
15 tháng 9 2016 lúc 13:05

1/ Trước hết ta chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Áp dụng : 

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

                                            \(=2\left(1-\frac{1}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n+1}}< 2\) (đpcm)

Hoàng Lê Bảo Ngọc
15 tháng 9 2016 lúc 13:17

Với mọi \(n\ge2\)

\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}\)

                        \(=2\left(\sqrt{n+1}-\sqrt{n}\right)\) (1)

Lại có : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{\left(\sqrt{n}+\sqrt{n-1}\right)\left(\sqrt{n}-\sqrt{n-1}\right)}\)

                                     \(=2\left(\sqrt{n}-\sqrt{n-1}\right)\) (2)

Từ (1) và (2) suy ra \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

Áp dụng với n = 2,3,4,...,100 được đpcm.

 


Các câu hỏi tương tự
Nguyễn Ánh Tuyền
Xem chi tiết
nguyễn minh hà
Xem chi tiết
Hải Nam Xiumin
Xem chi tiết
Hải Nam Xiumin
Xem chi tiết
Nguyễn Anh Khoa
Xem chi tiết
Lương Ngọc Anh
Xem chi tiết
Lương Ngọc Anh
Xem chi tiết
Lê Chí Cường
Xem chi tiết
Hải Nam Xiumin
Xem chi tiết