Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thư Đỗ Ngọc Anh
Xem chi tiết
Minh Hiếu
28 tháng 12 2021 lúc 20:44

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 22:00

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

đinh văn tiến d
Xem chi tiết
Akai Haruma
25 tháng 2 2023 lúc 16:03

Lời giải:
$S=(2+2^2)+(2^3+2^4)+....+(2^{23}+2^{24})$

$=2(1+2)+2^3(1+2)+....+2^{23}(1+2)$

$=(1+2)(2+2^3+...+2^{23})$

$=3(2+2^3+...+2^{23})\vdots 3$

b.

$S=2+2^2+2^3+...+2^{23}+2^{24}$

$2S=2^2+2^3+2^4+....+2^{24}+2^{25}$

$\Rightarrow 2S-S=2^{25}-2$

$\Rightarrow S=2^{25}-2$

Ta có:

$2^{10}=1024=10k+4$

$\Rightarrow 2^{25}-2=2^5.2^{20}-2=32(10k+4)^2-2=32(100k^2+80k+16)-2$
$=10(320k^2+8k+51)\vdots 10$

$\Rightarrow S$ tận cùng là $0$

 

đinh văn tiến d
Xem chi tiết
sunny
Xem chi tiết
Kiều Vũ Linh
14 tháng 10 2023 lúc 12:48

S = 2¹ + 2² + 2³ + ... + 2⁶⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2⁵⁷ + 2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2⁵⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + 2⁵⁶.30

= 30.(1 + 2⁴ + ... + 2⁵⁶)

= 10.3.(1 + 2⁴ + ... + 2⁵⁶) ⋮ 10

Vậy chữ số tận cùng của S là 0

*) S = 2¹ + 2² + 2³ + ... + 2⁶⁰

= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 14 + 2³.(2 + 2² + 2³) + ... + 2⁵⁷.(2 + 2² + 2³)

= 14 + 2³.14 + ... + 2⁵⁷.14

= 14.(1 + 2³ + ... + 2⁵⁷) ⋮ 14

Vậy S ⋮ 14

huynh dien do
Xem chi tiết
Huỳnh Rạng Đông
Xem chi tiết
ʚßồ Çôйǥ Ąйɦɞ
Xem chi tiết
Lê Hoàng
21 tháng 3 2020 lúc 21:46

\(S=5+5^2+5^3+...+5^{2008}\)

a) Ta có: \(126=5^0+5^3\)

\(5+5^4=5\left(5^0+5^3\right)\text{ }⋮\text{ }126,\text{ }5^2+5^5=5^2\left(5^0+5^3\right)\text{ }⋮\text{ }126,...\)

Áp dụng lần lượt như thế, ta có:

\(\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+\left(5^7+5^{10}\right)+\left(5^8+5^{11}\right)+\left(5^9+5^{12}\right)+...+\left(5^{2005}+5^{2008}\right)\text{ }⋮\text{ }126\)

Còn thiếu \(5^{2006}+5^{2007}\), ta có: \(5^{2006}+5^{2007}=5^{2006}\left(5^0+5^1\right)=5^{2006}\cdot6=2\cdot3\cdot5^{2006}\)

Trong khi đó: \(126=2\cdot3^2\cdot7\)

Ta dễ thấy \(5^{2006}+5^{2007}\) không chia hết cho \(3\cdot7=21\), nên \(5^{2006}+5^{2007}\) không chia hết cho 126.

Từ đó suy ra S không chia hết cho 126.

b) Tất cả các số hạng đều có chữ số tận cùng là 5.

Biểu thức S có \(\left(2008-1\right)+1=2008\) số hạng cộng lại với nhau.

=> S có chữ số tận cùng là 0 (vì số lượng các số hạng cộng lại với nhau là số chẵn)

Khách vãng lai đã xóa
Phan Ngọc Bảo Trân
Xem chi tiết
Vu Thi Thu Ha
Xem chi tiết
lelinhngoc
21 tháng 11 2015 lúc 13:15

bó tay . com .vn

Dao Manh Toan
Xem chi tiết
Bùi Minh Anh
1 tháng 1 2016 lúc 15:04

S= (2+2^2+2^3+2^4) + .......+ (2^97+2^98+2^99+2^100) = 2.(1+2+2^2+2^3) + ........+2^97.(1+2+2^2+2^3)

= 2.15+........+2^97.15 = 15.(2+2^5+.........+2^97) * 15

Ta có : 2S = 2^2+2^3+2^4+.......+2^101

=> 2S-S = (2^2+2^3+2^4+.........+2^101) - (2+2^2+2^3+........+2^100) = 2^101 - 2 = S

vì 2^101-2 = 2^100.2-2 = (.....6) . 2 -2 = (.....2) - 2 = (......0) 

vậy S có c/s tận cùng là 0