a, 3 mũ 1 + 3 mũ 2 + 3 mũ 3+ 3 mũ 4 + ....+ 3 mũ 2015 không chia hết cho 4
A= 3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + 3 mũ 5 + ....+ 3 mũ 2015 + 3 mũ 2016 sao cho A chia hết cho 4 , 7
Ta có:31+32+........+32016
=(31+32)+.......+(32015+32016)
=3(1+3)+.......+32015(1+3)
=3.4+......+32015.4
=4(3+.....+32015)
VÌ 4 chia hết cho4 nên A chia hết cho 4
Ta có 3+32+33+.......+32014+32015+32016
(3+32+33)+......+(32014+32015+32016)
=3(1+3+6)+....+32014(1+3+6)
=3.7+........+32014.7
=7.(3+...+32014)
Vì7 chia hết cho 7 nênA sẽ chia hết cho 7
Mong các bạn góp ý để bài làm của mình dc hoàn thiện hơn ☺☺☺
4 mũ 0 + 4 mũ 1 + 4 mũ 2 + 4 mũ 3 + ...........+ 4 mũ 2015 +4 mũ 2016 :có chia hết cho 5 không
Đặt A =40+41+42+43+...+42016
=>4.A=4.(40+41+43+...+42016)
=>4.A=41+42+43+44+...+42016+42017
=>4.A-A=(41+42+43+44+...+42016+42017) - ( 40+ 41+42+43+...+42016)
=>(4-1).A=40-42017
=>3 . A = 1 - 42017
~~ Bạn nào thấy đúng thì tk nha~~
Chứng minh : A = 2mũ 1 + 2 mũ 2 + 2 mũ 3 + 2mũ 4 + ...+ 2 mũ 2010 chia hết cho 3&7
Chứng minh : C = 3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4 + ....+ 2 mũ 2010 chia hết cho 4 và 13
Chứng minh : B = 5 mũ 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4 +.....+ 5 mũ 2010 chia hết cho 6 và 31
Chứng minh : D = 7 mũ 1 + 7 mũ 2 + 7 mũ 3 + 7 mũ 4 +.....+ 7 mũ 2010 chia hết cho 8 và 57
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
Giải:
A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010
A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_
A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3
A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3
A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)
A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)
A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7
A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.
Các câu còn lại làm tương tự như câu a nha bạn!
1/Chứng minh
a/Chứng minh A=2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4+.....+2 mũ 2010 chia hết cho3 và 7
b/Chứng minh B=3 mũ 1 + 3 mũ 2 + 3 mũ 3 + 3 mũ 4+.....+3 mũ 2010 chia hết cho 4 và 13
c/Chứng minh C=5 mũ 1 + 5 mũ 2 + 5 mũ 3 + 5 mũ 4+ +5 mũ 2010 chia hết cho 6 và 31
d/Chứng minh D=7 mũ 1 + 7 mũ 2 +7 mũ 3 + 7 mũ 4 +.....+7 mũ 2010 chia hết cho 8 và 57
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
a)Chứng minh:A=2 mũ 1+2 mũ 2+2 mũ 3+2 mũ4+...+2 mũ 2010 chia hết cho 3 và 7
b)Chứng minh:B=3 mũ 1+3 mũ 2+3 mũ 3+3 mũ 4+...+3 mũ 2010 chia hết cho 4 và 13
a) A = 21 + 22 + 23 + 24 +...+ 22010
=> A = (2 + 22) + 22.(2 + 22) + ... + 22008.(2 + 22)
=> A = 6 + 22.6 + ... + 22008.6
=> A = 6 . (1 + 22 + ... + 22008) \(⋮\)3 => A \(⋮\)3.
A = 21 + 22 + 23 +...+ 22010
=> A = (21 + 22 + 23) + ... + (22008 + 22009 + 22010)
=> A = 14 + ... + 22007.(2 + 22 + 23)
=> A = 14 + ... + 22007.14
=> A = 14.(1+...+22007) \(⋮\)7 => A \(⋮\)7
b) Để B chia hết cho 4 thì bạn gộp 2 số lại ( được 1 thừa số là 12 ) => B chia hết cho 4.
Để B chia hết cho 7 thì bạn gộp 3 số lại ( được 1 thừa số là 39 ) => B chia hết cho 13.
Sorry, bài B không làm chặt chẽ được vì mình bận đi học rồi.
Chúng bạn học tốt.
cho mình hỏi bạn Phúc lí do vì sao lại là 2 mũ 2008
Chứng tỏ rằng :
A) 5 mũ 2016 + 5 mũ 2015 + 5 mũ 2016 chia hết cho 31
B) 1+7+7 mũ 2 + 7 mũ 3+ .....+7 mũ 701 chia hết cho 8
C) 4 mũ 39 + 4 mũ 40+ 4 mũ 41 chia hết cho 28
1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên
a) \(4^{13}+4^{14}+4^{15}+4^{16}=4^{13}\left(1+4\right)+4^{14}\left(1+4\right)=4^{13}.5+4^{14}.5=5\left(4^{13}+4^{14}\right)⋮5\Rightarrow dpcm\)
c) \(2^{10}+2^{11}+2^{12}+2^{13}+2^{14}+2^{15}\)
\(=2^{10}\left(1+2+2^2\right)+2^{13}\left(1+2+2^2\right)\)
\(=2^{10}.7+2^{13}.7=7\left(2^{10}+2^{13}\right)⋮7\Rightarrow dpcm\)
Câu c bạn xem lại đê
không tính tổng , hãy giải thích : a] 3 mũ 3 + 3 mũ 4 + 3 mũ 5 + 3 mũ 6 chia hết cho 4
b] 5 mũ 5 + 5 mũ 6 + 5 mũ 7 + 5 mũ 8 chia hết cho 6
1 Cho n(n+1) là tích 2 số tự nhiên liên tiếp thì chia hết cho 2 .
Chứng minh: a, 3n mũ 2 + n chia hết b, (4n mũ 2 + 4n ) + 8n + 16 chia hết 8
2 ,Chứng minh:C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .........+ 3 mũ 11 chia hết 13
3 , Tìm số dư của : a, 2004 mũ 2004 khi chia cho 11 b, 776 mũ 776 + 777 mũ 777 + 778 mũ 778 khi chia cho 3 , 5
4 , Chứng minh : 9 mũ 2002 - 1 chia hết 18
5 , Chứng minh : 7 mũ 214 - 4 chia hết 3
6 , Chứng minh : 4 mũ 200 + 3 mũ 1002 chia hết 13
cho mik hỏi câu này nữa a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51