1+2+3+4+5+.....+100-101-102-103-....-200=
Giúp vs ạaa
(101+102+103+...+200) + (-1-2-3-...-100)
(101+102+...+200)+(-1-2-3-...-100)
=(101-1)+(102-2)+...+(200-100)
=100+100+...+100
=100*100=10000
A=1/100+1/101+1/102+1/103+...+1/200.So sanh A voi 3/4
A=\(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)
(Sử dung phương pháp chặn số đầu)
\(\frac{1}{100}\)>\(\frac{1}{101}\)
\(\frac{1}{100}\)>\(\frac{1}{102}\)
...
\(\frac{1}{100}\)>\(\frac{1}{200}\)
nên \(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)> \(\frac{1}{100}\)+\(\frac{1}{100}\)+...+\(\frac{1}{100}\)(có 101 phân số)
\(\Rightarrow\)\(\frac{1}{100}\)+\(\frac{1}{101}\)+\(\frac{1}{102}\)+...+\(\frac{1}{200}\)>101.\(\frac{1}{100}\)=\(\frac{101}{100}\)>1>\(\frac{3}{4}\)
\(\Rightarrow\)A >\(\frac{3}{4}\)
câu 1 : tính tổng
A = 1+(-3) +5+ (-7) + ...+ 17 + (-19 )
C = 1+2-3-4+5+6 -7-8 +...-99-200+101+102
B = 1-4+7-10+...-100+103
A=1+(-3)+5+(-7)+...17+(-19)
=> A=(1+5+9+13+17)-(3+7+11+15+19)
=>A=45-55
=>A=-10
Ta có :
A=1+(-3)+5+(-7)+...17+(-19)
=> A=(1+5+9+13+17)-(3+7+11+15+19)
=>A=45-55
=>A=-10
Đap số : -10
Giải hộ mình với mai phải nộp euif
cho A= 1+2-3+4-5+6+...+100+101-102+103
B= 1+(-3)+5+(-7)+...+101+(-103)+105
so sánh A và B
A= [(1+101)x101:2]-(102-103)
A= 5151+1
A=5152
B= [1+(-3)]+[4+(-5)]+.......[101+(-103)]+105
B= (-2)+(-2)...........+(-2)+105
=> A>B
B=(-2)x26+105
B=(-56)+105
B= 49
chứng minh.1-1/2+1/3-1/4+1/5-1/6+...1/199-1/200=1/101+1/102+1/103+...+1/200
Xét vế trái: 1-1/2+1/3-1/4+1/5-1/6+...+1/199-1/200
=(1+1/3+1/5+..+1/199)-(1/2+1/4+..+1/200)
=(1+1/2+1/3+1/4+1/5+...+1/199+1/200)-2.(1/2+1/4+..+1/200)
=1+1/2+1/3+1/4+1/5+..+1/199+1/200-1-1/2-...-1/100
=1/101+1/102+1/103+...1/200
Vậy vế trái bằng vế phải
A=1/100+1/101+1/102+1/103+...+1/200 chưng minh a>5/8
1+(-2)+(-3)+4+5+(-6)+(-7)+8+.....+99-100-101+102+103
1 + ( -2 ) + (-3 ) + 4 + 5 + ( -6 ) + ..... + 99 - 100 - 101 + 102 + 103
[ 1 + ( -2 )] + [(-3 ) + 4] + [5 + ( -6 )] + ..... +[-98+ 99 ]- 100 - 101 + 102 + 103
= ( -1 ) + 1 + ( -1 ) + ..... + (-1 ) +....+ (-1 )- 100 -101 + 102 + 103
= 0 + 50 - 100 - 101 + 102 + 103
= 54
Mình không chắc
1+(-2)+(-3)+4+5+(-6)+(-7)+8+.....+99-100-101+102+103
= 1 + ( 2 - 3 - 4 + 5 ) + (6 - 7 - 8 + 9 ) + ... ( 98 - 99 -100 + 101 ) +102
= 1 + 0 + 0 + 0 + .... + 102
=103
cho A=1/101+1/102+1/103+...+1/199+1/200 cmr 5/8<a<3/4
\(A=\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{199}+\dfrac{1}{120}\left(a\right)\)
\(\Rightarrow A=\left(\dfrac{1}{101}+\dfrac{1}{102}+...\dfrac{1}{125}\right)+\left(\dfrac{1}{126}+\dfrac{1}{127}+...\dfrac{1}{150}\right)+\left(\dfrac{1}{151}+\dfrac{1}{152}+...\dfrac{1}{175}\right)+\left(\dfrac{1}{176}+\dfrac{1}{177}+...\dfrac{1}{200}\right)\)
\(\Rightarrow A>25.\dfrac{1}{125}+25.\dfrac{1}{150}+25.\dfrac{1}{175}+25.\dfrac{1}{200}\)
\(\Rightarrow A>\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\)
\(\Rightarrow A>\dfrac{168+140+120+105}{840}=\dfrac{533}{840}>\dfrac{5}{8}\left(\dfrac{533}{840}>\dfrac{525}{840}\right)\)
\(\Rightarrow A>\dfrac{5}{8}\left(1\right)\)
\(\left(a\right)\Rightarrow A=\left(\dfrac{1}{101}+...\dfrac{1}{120}\right)+\left(\dfrac{1}{121}+...\dfrac{1}{140}\right)+\left(\dfrac{1}{141}+...\dfrac{1}{160}\right)+\left(\dfrac{1}{161}+...\dfrac{1}{180}\right)+\left(\dfrac{1}{181}+...\dfrac{1}{200}\right)\)
\(\Rightarrow A< 20.\dfrac{1}{100}+20.\dfrac{1}{120}+20.\dfrac{1}{140}+20.\dfrac{1}{160}+20.\dfrac{1}{180}\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}\)
\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{504+420+360+315+280}{2520}=\dfrac{1879}{2520}< \dfrac{3}{4}\left(\dfrac{1879}{2520}< \dfrac{1890}{2520}\right)\)
\(\Rightarrow A< \dfrac{3}{4}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{5}{8}< A< \dfrac{3}{4}\left(dpcm\right)\)
bai 1: tính tổng
1, 1+2+3+.....+99+100
2, 101+102+103+......+200+201
3, 2+5+8+11+......+294+206
4, 11+22+33+44+..........+99+110
5, 367+361+155+........+7+1