Những câu hỏi liên quan
TTLT caoson
Xem chi tiết
TTLT caoson
Xem chi tiết
Anni
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2022 lúc 9:50

a: BC=10cm

b: Xét ΔCAB vuông tại A và ΔMAN vuông tại A có

AB=AN

AC=AM

Do đó: ΔCAB=ΔMAN

Suy ra: CB=MN

Bình luận (0)
legjfj
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 12 2021 lúc 17:23

a: Xét tứ giác ADCB có 

N là trung điểm của AC

N là trung điểm của DB

Do đó: ADCB là hình bình hành

Suy ra: DA=BC

Bình luận (0)
Haruno :3
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 14:37

a: Xét ΔANE và ΔCNB có

NA=NC

\(\widehat{ANE}=\widehat{CNB}\)

NE=NB

Do đó: ΔANE=ΔCNB

Suy ra: \(\widehat{AEN}=\widehat{CBN}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AE//BC

b: Xét ΔAMD và ΔBMC có

MA=MB

\(\widehat{AMD}=\widehat{BMC}\)

MD=MC

Do đó: ΔAMD=ΔBMC

Bình luận (2)
23.LươngTrúcPhương
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 7 2023 lúc 23:29

a: BC=căn 4^2+3^2=5cm

b: Xét ΔABC vuông tại A và ΔANM vuông tại A có

AB=AN

AC=AM

=>ΔABC=ΔANM

=>BC=NM

c: ΔANB vuông tại A có BA=AN

nên ΔANB vuông cân tại A

=>góc ANB=45 độ

ΔACM vuông tại A có AC=AM

nên ΔACM vuông cân tại A

=>góc ACM=45 độ=góc ANB

=>CM//NB

Bình luận (0)
Quang Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 4 2023 lúc 14:41

a: Xet tứ giác ABCD có

N là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AD=BC

b: Xét tứ giác ACBE có

M là trung điểm chung của AB và CE

=>ACBE là hình bình hành

=>AE//BC

Bình luận (0)
thanh tinh bui
Xem chi tiết
thanh tinh bui
11 tháng 12 2021 lúc 16:06

CÍU

 

Bình luận (1)
Nguyễn Hoàng Tùng
11 tháng 12 2021 lúc 16:22

undefined

\(a,Xét\) \(\Delta ADN\) \(và\) \(\Delta CBN\) \(có:\) 

\(NC=NA\\ \widehat{BNC}=\widehat{AND}\\ NB=ND\)

\(\Rightarrow\Delta ADN=\Delta CBN\left(c.g.c\right)\)

\(\Rightarrow AD=BC\) (cạnh tương ứng)

\(b,\Rightarrow\widehat{ADN}=\widehat{NBC}\) (góc tương ứng)

\(\Rightarrow AD\) song song với BC (so le trong)

\(CM:\Delta AME=\Delta BMC\) (bạn tự CM nha)

Từ đó suy ra \(EA=BC\) (cạnh tương ứng) mà BC=AD \(\Rightarrow EA=AD\) (1)

\(\Rightarrow\widehat{AEM}=\widehat{MCB}\) (góc tương ứng)

\(\Rightarrow AE\) song song với BC

Mà \(AE\) song song với BC, AD song song với BC\(\Rightarrow E,A,D\) thẳng hàng (2)

Từ (1) và (2) suy ra A là trung điểm của ED

(đpcm)

 

 

Bình luận (1)
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 10 2021 lúc 8:39

a, Vì \(\left\{{}\begin{matrix}AN=NC\\\widehat{AND}=\widehat{BNC}\left(đối.đỉnh\right)\\BN=ND\end{matrix}\right.\) nên \(\Delta AND=\Delta CNB\left(c.g.c\right)\)

Do đó \(AD=BC\)

b, Vì \(\left\{{}\begin{matrix}AM=MB\\\widehat{AME}=\widehat{BMC}\left(đối.đỉnh\right)\\EM=MC\end{matrix}\right.\) nên \(\Delta AME=\Delta BMC\left(c.g.c\right)\)

Do đó \(\widehat{MAE}=\widehat{MBC}\) mà 2 góc này ở vị trí so le trong nên AE//BC

c, Vì \(\widehat{NAD}=\widehat{NCB}\left(\Delta AND=\Delta CNB\right)\) mà 2 góc này ở vị trí slt nên AD//BC

Mà AE//BC nên A,D,E thẳng hàng

Ta có \(AE=BC\left(\Delta AME=\Delta BMC\right)\)

Mà \(AD=BC\left(cmt\right)\) nên \(AD=AE\)

Vậy A là trung điểm DE

Bình luận (0)