Với mọi số tự nhiên n ≥ 2 hãy so sánh:
a. với 1
b. với 0,5
với mọi số tự nhiên n>=2 hãy so sánh A=1/2 mũ 2+1/3 mũ 3+......+1/n mũ 2 với 1
Với mọi số tự nhiên n \(\ge\)2 hãy so sánh: P = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)với 1
Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{n^2}< \dfrac{1}{n\left(n-1\right)}\)
\(\Rightarrow P< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n-1\right)}\)
\(\Rightarrow P< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(\Rightarrow P< 1-\dfrac{1}{n}< 1\)
\(\Rightarrow P< 1\)
với mọi số tự nhiên n>=2 hãy so sánh
a)A=1/2^2+1/3^2+1/4^2+...+1/n^2 với 1
\(\text{a)}A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Với mọi số tự nhiên n ≥ 2 hãy so sánh:
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...\dfrac{1}{n^2}v\text{ới}1\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n-1\right)}\\ A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}=1-\dfrac{1}{n}< 1\left(\dfrac{1}{n}>0\right)\)
Cho 2 số A(n) và B(n) như sau:
A = 22n + 1 + 2n+1 + 1
B = 22n + 1 – 2n + 1 + 1
Chứng minh rằng với mọi số tự nhiên n, tồn tại một và duy nhất một trong hai số A(n) hoặc B(n) chia hết cho 5.
#)Giải :
Giả sử cả A và B đều chia hết cho 5
=> a - b chia hết cho 5
=> 22n + 1 + 22n + 1 + 1 - (22n + 1 - 22n + 1 + 1) = 2.22n + 1 chia hết cho 5
=> 22n + 1 chia hết cho 5
Nhưng vì 22n + 1 có tận cùng là 0 và 5 nên điều này không thể xảy ra
=> Phải có ít nhất A(n) hoặc B(n) không chia hết cho 5, số còn lại chia hết cho 5
=> đpcm
Cho 2 số A(n) và B(n) như sau:
A = 22n + 1 + 2n+1 + 1
B = 22n + 1 – 2n + 1 + 1
Chứng minh rằng với mọi số tự nhiên n, tồn tại một và duy nhất một trong hai số A(n) hoặc B(n) chia hết cho 5.
-Ta có: \(2^{4n}=16^n=\overline{...6}\)
\(\Rightarrow2^{4n}.4=\overline{...6}.4\)
\(\Rightarrow2^{4n+2}=\overline{...4}\)
\(A.B=\left(2^{2n+1}+2^{n+1}+1\right)\left(2^{2n+1}-2^{n+1}+1\right)\)
\(=\left[\left(2^{2n+1}+1\right)+2^{n+1}\right]\left[\left(2^{2n+1}+1\right)-2^{n-1}\right]\)
\(=\left(2^{2n+1}+1\right)^2-2^{2.\left(n+1\right)}\)
\(=2^{4n+2}+2^{2n+1}.2+1-2^{2n+2}\)
\(=2^{4n+2}+1=\overline{...4}+1=\overline{...5}⋮5\)
-Như vậy, thì \(A⋮5\) hay \(B⋮5\).
-Còn về hai số đó có thể cùng chia hết cho 5 không thì mình chưa làm được.
-Chứng minh hai số đó không thể cùng chia hết cho 5:
-Vì \(\left(A.B\right)⋮5\) nên sẽ có 1 trong hai số chia hết cho 5. Vì A,B có vai trò giống nhau nên giả sử số đó là A.
-Ta chứng minh \(\left(A+B\right)\) không chia hết cho 5 thì \(B\) cũng không chia hết cho 5.
\(A+B=\left(2^{2n+1}+2^{n+1}+1\right)+\left(2^{2n+1}-2^{n+1}+1\right)\)
\(=2.2^{2n+1}+2=2\left(2^{2n+1}+1\right)\)
-Ta có: \(2^{2n}=4^n\).
+Nếu \(n=2k\) thì \(4^n=4^{2k}=16^k=\overline{...6}\Rightarrow4^n.2+1=\overline{...2}+1=\overline{...3}\) không chia hết cho 5.
+Nếu \(n=2k+1\) thì \(4^n=4^{2k+1}=16^k.4=\overline{...6}.4=\overline{...4}\)
\(\Rightarrow4^n.2+1=\overline{...8}+1=\overline{...9}\).
\(\Rightarrow\) Với mọi giá trị của n thì \(4^n.2+1=2^{2n+1}+1\) không chia hết cho 5.
\(\Rightarrow2\left(2^{2n+1}+1\right)\) không chia hết cho 5 hay \(A+B\) không chia hết cho 5.
\(\Rightarrow B\) không chia hết cho 5.
-Vậy.................
Cho 2 số A(n) và B(n) như sau:
A = 22n + 1 + 2n+1 + 1
B = 22n + 1 – 2n + 1 + 1
Chứng minh rằng với mọi số tự nhiên n, tồn tại một và duy nhất một trong hai số A(n) hoặc B(n) chia hết cho 5.
Cho 2 số A(n) và B(n) như sau:
A = 22n + 1 + 2n+1 + 1
B = 22n + 1 – 2n + 1 + 1
Chứng minh rằng với mọi số tự nhiên n, tồn tại một và duy nhất một
trong hai số A(n) hoặc B(n) chia hết cho 5.
Giúp mk gấp !!!
với mọi số tự nhiên n lớn hơn hoặc =2 hãy so sánh:
A=1/22+1/33+1/42+...+1/n2 với 1
ai làm được cho nhìu like lun
hãy chứng minh rằng n.(n+13) chia hết cho 2 với mọi chứng số tự nhiên n
*Nếu n chẵn thì n(n+13) chẵn
=> n(n+13) chia hết cho 2
*Nếu n lẻ => n+13 chẵn
=>n(n+13) chẵn
=> n(n+13) chia hết cho 2
Vậy /............
chia hết cho 2 . mk hiểu nhưng ko biết cách giải OK