Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Thùy Dung
Xem chi tiết
Minh Hiếu
14 tháng 9 2021 lúc 20:21

c)\(7^{2n}+7^{2n+2}=2450\)

\(7^{2n}+7^{2n}.7^2=2450\)

\(7^{2n}.50=2450\)

\(7^{2n}=49\)\(=7^2\)

⇒2n=2

⇒n=1

Minh Hiếu
14 tháng 9 2021 lúc 20:18

a)\(\left(-\dfrac{1}{5}\right)^n=-\dfrac{1}{125}\)                   b)\(\left(-\dfrac{2}{11}\right)^m=\dfrac{4}{121}\)

\(\left(-\dfrac{1}{5}\right)^n=\left(-\dfrac{1}{5}\right)^3\)                    \(=\left(-\dfrac{2}{11}\right)^m=\left(-\dfrac{2}{11}\right)^2\)

⇒n=3                                          ⇒m=2

Aya aya
Xem chi tiết

a) Vì 3\(⋮\)n

=> n\(\in\)Ư(3)={ 1; 3 }

Vậy, n=1 hoặc n=3

nguyên gfgr
17 tháng 10 2018 lúc 19:23

A:    n=3;1                  E:     n=2

B:     n=6;2                  F:    n=2

c:     n=1                     G:     n=2

D:    n=2                      H:     n=5

Nguyễn Văn Vũ
Xem chi tiết
ngonhuminh
2 tháng 11 2016 lúc 21:43

\(p=\left(n-1\right)^2\left[\left(n-1\right)^2+1\right]+1\)

\(\left(n-1\right)^4+2.\left(n-1\right)^2+1-\left(n-1\right)^2\)

\(\left[\left(n-1\right)^2+1\right]^2-\left(n-1\right)^2\)

\(\left[\left(n-1\right)^2+1-\left(n-1\right)\right]\left[\left(n-1\right)^2+1+\left(n-1\right)\right]\)

\(\left[n^2-3n+3\right]\left[n^2-n+1\right]\)

can

\(\orbr{\begin{cases}n^2-3n+3=1\Rightarrow n=\orbr{\begin{cases}n=2\\n=1\end{cases}}\\n^2-n+1=1\Rightarrow n=\orbr{\begin{cases}n=0\\n=1\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}n^2-3n+3=1\\n^2-n+1=1\end{cases}}\)

n=(0,1,2)

du

n=2

ds: n=2

Nguyễn Hữu Thành Vinh
Xem chi tiết
Hoàng Đình Bảo
9 tháng 5 2022 lúc 12:33

$\frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}(*)$

Với $n=1$ thì $(*)\Leftrightarrow \frac{1}{2}=\frac{1}{2}$

Vậy $(*)$ đúng với $n=1$

Giả sử với $n=k$,$ k\in \mathbb{N^*}$ thì $(*)$ đúng, tức là: 

$\frac{1.3.5...(2k-1)}{(k+1)(k+2)...(k+k)}=\frac{1}{2^k}$

Ta cần chứng minh với $n=k+1$ thì $(*)$ đúng, tức là: 

$\frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1}{2^{k+1}}=\frac{1}{2^k}.\frac{1}{2}$

$\Leftrightarrow \frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...(k+k)}$

$\Leftrightarrow \frac{1.3.5...(2k-1)2k(2k+1)}{(k+2)(k+3)...2k(2k+1)(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...2k}$

$\Leftrightarrow \frac{2k(2k+1)}{2k(2k+1)(2k+2)}=\frac{1}{2(k+1)}$

$\Leftrightarrow \frac{1}{(2k+2)}=\frac{1}{2(k+1)}$

Do đó với $n=k+1$ thì $(*)$ đúng

$\Rightarrow \frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}$

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nguyễn Bùi Minh Thư
Xem chi tiết
I don
2 tháng 9 2018 lúc 17:04

a) (2n-1)4 : (2n-1) = 27

(2n-1)3 = 27  =33

=> 2n - 1= 3

=> 2n = 4

n = 2

phần b,c làm tương tự nha bn

I don
2 tháng 9 2018 lúc 17:05

d) (21+n) : 9 = 95:94

(2n+1) : 9 = 9

2n + 1 = 81

2n = 80

n = 40

Đào Trần Tuấn Anh
2 tháng 9 2018 lúc 17:18

Tìm số tự nhiên n, biết :

a/ (2.n1)4:(2.n1)=27

\(\left(2.n-1\right)^3=27\)

\(2.n-1=3^3\Rightarrow2.n-1=3\)

2.n - 1 = 3

2.n      = 3 + 1

   n      =  4 : 2

   n      =  2

B,C tương tự nha

d) \(\left(21+n\right):9=9^5:9^4\)

   \(\left(21+n\right):9=9\)

        \(21+n=9.9\)

         \(21+n=81\)

                 \(n=81-21\)

                  \(n=60\)

            

        

ngo hoai my
Xem chi tiết
Nguyễn Thùy Trang
13 tháng 10 2019 lúc 9:01

a) \(2n+7⋮n+1\)

=> \(2n+2+5⋮n+1\)

=> \(2\left(n+1\right)+5⋮n+1\)

=> \(5⋮n+1\)=> \(n+1\inƯ\left(5\right)\)mà \(n\in N\)

=>\(n+1\in\left\{1;5\right\}\)

=> \(n\in\left\{0;4\right\}\)

b) \(n+3⋮n+1\)

=> \(\left(n+1\right)+2⋮n+1\)

=>\(2⋮n+1\)=>\(n+1\inƯ\left(2\right)\)mà \(n\in N\)

=>\(n+1\in\left\{1;2\right\}\)

=>\(n\in\left\{0;1\right\}\)

Nguyễn đức huy
Xem chi tiết
Phạm Nguyễn Tuấn Minh
Xem chi tiết
Pham Van Hung
2 tháng 12 2018 lúc 12:02

\(\left(n^2+2n-6\right)⋮\left(n-4\right)\)

\(\Rightarrow n^2-4n+6n-24+18⋮\left(n-4\right)\)

\(\Rightarrow n\left(n-4\right)+6\left(n-4\right)+18⋮\left(n-4\right)\Rightarrow18⋮\left(n-4\right)\)

\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm3;\pm6;\pm9;\pm18\right\}\)

Mà n là STN nên tìm được

\(n\in\left\{1;2;3;5;6;7;10;13;22\right\}\)

Nguyễn Bá Huy h
Xem chi tiết