Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hữu Thành Vinh

Với n là số tự nhiên khác 0; Chứng minh \(\dfrac{1\cdot3\cdot5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)...\left(n+n\right)}=\dfrac{1}{2^n}\)

Help me please!

Hoàng Đình Bảo
9 tháng 5 2022 lúc 12:33

$\frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}(*)$

Với $n=1$ thì $(*)\Leftrightarrow \frac{1}{2}=\frac{1}{2}$

Vậy $(*)$ đúng với $n=1$

Giả sử với $n=k$,$ k\in \mathbb{N^*}$ thì $(*)$ đúng, tức là: 

$\frac{1.3.5...(2k-1)}{(k+1)(k+2)...(k+k)}=\frac{1}{2^k}$

Ta cần chứng minh với $n=k+1$ thì $(*)$ đúng, tức là: 

$\frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1}{2^{k+1}}=\frac{1}{2^k}.\frac{1}{2}$

$\Leftrightarrow \frac{1.3.5...(2k+1)}{(k+2)(k+3)...(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...(k+k)}$

$\Leftrightarrow \frac{1.3.5...(2k-1)2k(2k+1)}{(k+2)(k+3)...2k(2k+1)(2k+2)}=\frac{1.3.5...(2k-1)}{2(k+1)(k+2)...2k}$

$\Leftrightarrow \frac{2k(2k+1)}{2k(2k+1)(2k+2)}=\frac{1}{2(k+1)}$

$\Leftrightarrow \frac{1}{(2k+2)}=\frac{1}{2(k+1)}$

Do đó với $n=k+1$ thì $(*)$ đúng

$\Rightarrow \frac{1.3.5...(2n-1)}{(n+1)(n+2)...(n+n)}=\frac{1}{2^n}$

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Các câu hỏi tương tự
Trần Mai Anh
Xem chi tiết
Five centimeters per sec...
Xem chi tiết
online
Xem chi tiết
nhóm 5
Xem chi tiết
Saiyan Blue Super
Xem chi tiết
Nguyễn Thị Đoan Trang
Xem chi tiết
Trần Đại Nghĩa
Xem chi tiết
Xem chi tiết
Aya aya
Xem chi tiết