cho tam giác ABC vuông tại A,B = 30 độ. Chứng minh rằng AC = 1/2 BC
cho tam giác ABC vuông tại A,B = 30 độ. Chứng minh rằng AC = 1/2 BC
Với tam giác ABC có góc \(A=90^o\) và góc \(B=60^o\)
=> góc \(C=60^o\)
Gọi M là trung điểm của BC
mà tam giác ABC có góc \(A=90^o\)
=>AM=BM=CM(định lý)
=>tam giác AMC cân tại M
mà góc \(C=60^o\)
=> tam giá AMC đều
=>AC=MC
mà MC =1/2.BC
=> AC = 1/2 BC
Tick nha
Cho tam giác ABC vuông tại A có góc B bằng 30 độ . Chứng minh rằng AC= 1/2 . BC
GIẢI
Xét tam giác ABC vuông tại A có góc B = 30 độ
Trên tia đối của tia AC lấy điểm D sao cho AD = AC
Tam giác ABD = tam giác ABC ( c.g.c)
=> BD = BC ( 2 cạnh tương ứng )
=> góc ABD = góc ABC ( 2 góc tương ứng )
Tam giác BDC cân tại B có góc DBC có 60o nên là tam giác đều .
Do đó AC= 1/2 BC
cho tam giác ABC vuông tại A có góc B = 30 độ. Chứng minh rằng BC =2. AC
Xét ΔABC vuông tại A có
\(\sin B=\dfrac{AC}{BC}\)
\(\Leftrightarrow\dfrac{AC}{BC}=\dfrac{1}{2}\)
hay BC=2AC
Xét \(\Delta\) \(ABC \) ta có :
\(\widehat{A} + \widehat{B} + \widehat{C} = 180^0\)
\(\rightarrow 90^0 + \widehat{B} + 30^0 = 180^0 \)
\(\widehat{B} = 180^0 - 30^0 - 90^0 = 180^0 - 120^0 = 60^0 \)
Tỉ số của \(\widehat{A}\) với \(\widehat{B}\) là :
\(\dfrac{\widehat{A}}{\widehat{B}}\) \(= \dfrac{30^0}{60^0} = \dfrac{1}{2}\)
\(\rightarrow BC = \dfrac{1}{2}AB\) \(( đpcm ) \)
Bài 1: Cho tam giác ABC cân tại A. BH là đường vuông góc hạ từ B đến AC. Chứng minh rằng BAC = 2CBH ( BAC và CBH là góc nha)
Bài 2: Cho tam giác ABC cân tại A, góc A= 30 độ. Trên các cạnh AB, AC lấy các điểm Q, P tương ứng sao cho góc QPC = 45 độ và PQ = BC. Chứng minh BC = CQ
Bài 3: Cho tam giác ABC cân tại B có góc B= 30 độ. Kẻ đường vuông góc từ B đến AC, cắt AC tại H. Trên BH lấy điểm D sao cho BD = AC. Chứng minh tam giác ADC đều
Cho tam giác ABC vuông tại A, góc B=30° . Chứng minh rằng AC = 1/2 BC.
Cho tam giác ABC vuông tại B có góc ACB = 30 độ. Tia phân giác của A cắt cạnh BC tại D . Lấy điểm E trên AC sao cho AB = AE .
1) Tính góc ADB
2) Chứng minh rằng tam giác BDA = tam giác EDA
3) Chứng minh rằng DA=DC
Cho tam giác ABC vuông tại B có góc ACB = 30 độ. Tia phân giác của A cắt cạnh BC tại D . Lấy điểm E trên AC sao cho AB = AE .
1) Tính góc ADB
2) Chứng minh rằng tam giác BDA = tam giác EDA
3) Chứng minh rằng DA=DC
Bài 6. Cho tam giác ABC vuông tại A, góc B = 30 độ. Lấy điểm D thuộc cạnh BC sao cho góc BAD bằng 30 độ. Chứng minh rằng:
a) Tam giác ADC là tam giác đều
b) AC = \(\dfrac{1}{2}\)BC
a, Ta có:
ADC=ˆA−ˆDAB=90o−30o=60o
Mà
Nên
Do đó là tam giác đều. (đpcm)
b, Theo chứng minh phần a, ta có: là tam giác đều
⇒AD=DC=AC(1)
Mà do AD là trung tuyến của trên AC nên
BD=CD=12BC
Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại D. Vẽ DE vuông góc với BC tại E.
a)Cho biết AC = 6cm, BC = 10cm. Tính độ dài AC
b)Chứng minh rằng : tam giác ABD = tam giác EBD
c)Chứng minh rằng : tam giác ABE cân
d)Chứng minh rằng DA < DC
a) cho ac rùi tính ac làm j nữa z bạn
b)xét tam giác abd vuông tại a và tam giác ebd vuông tại e có
bd chung
góc abd = góc ebd ( bd là tia phân giác của góc abc )
=> tam giác abd=tam giac ebd ( ch-gn)
c) có tam giác abd = tam giácđeb( ch-gn)
=> ab=eb( 2 cạnh tương ứng )
=> tam giác abe cân tại b ( dhnb tam giác cân )
d)có tam giác abd = tam giácđeb( ch-gn)
=> ad=ed( 2 cạnh tương ứng ) (1)
có tam giác dec vuông tại e
=> ed<dc( dc là cạnh huyền ) (2)
(1)(2)=> ad<dc