Xét ΔABC vuông tại A có
\(\sin B=\dfrac{AC}{BC}\)
\(\Leftrightarrow\dfrac{AC}{BC}=\dfrac{1}{2}\)
hay BC=2AC
Xét \(\Delta\) \(ABC \) ta có :
\(\widehat{A} + \widehat{B} + \widehat{C} = 180^0\)
\(\rightarrow 90^0 + \widehat{B} + 30^0 = 180^0 \)
\(\widehat{B} = 180^0 - 30^0 - 90^0 = 180^0 - 120^0 = 60^0 \)
Tỉ số của \(\widehat{A}\) với \(\widehat{B}\) là :
\(\dfrac{\widehat{A}}{\widehat{B}}\) \(= \dfrac{30^0}{60^0} = \dfrac{1}{2}\)
\(\rightarrow BC = \dfrac{1}{2}AB\) \(( đpcm ) \)