Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thùy Dung
Xem chi tiết
Nguyễn Hương Giang
Xem chi tiết
Yoo Ran Kang
Xem chi tiết
nguyen trong hieu
Xem chi tiết
Hựu Hựu
Xem chi tiết
Vi Huyên
7 tháng 7 2019 lúc 20:20

1) Đặt A = n6 - 1 = ( n3 - 1)( n3 + 1) = ( n - 1)( n2 + n + 1)( n +1)(n2 - n + 1)

Nếu n không chia hết cho 7 thì:

Xét nếu n = 7k + 1 thì n - 1 = 7k + 1 - 1 = 7k chia hết cho 7 nên A chia hết cho 7

Nếu n = 7k + 2 thì n2 + n + 1 = (7k + 2)2 + 7k + 2 + 1 = 7(7k2 +3k+1) chia hết cho 7 nên A chia hết cho 7

Tương tự đến trường hợp n = 7k + 6

=> Nếu n không chia hết cho 7 thì n6 - 1 chia hết cho 7

Mà n6 - 1 = (n3 - 1)(n3 + 1)

Do đó: n3 - 1 chia hết cho 7 hoặc n3 - 1 chia hết cho 7

Vi Huyên
7 tháng 7 2019 lúc 20:28

3) n(n + 1)(2n + 1)

= n(n + 1)[(n + 2) + (n - 1)]

= n(n + 1)(n + 2) + n(n + 1)(n - 1)

Vì n(n + 1)(n + 2) là tích của ba số tự nhiên liên tiếp

Nên n(n + 1)(n + 2) chia hết cho 6 (1)

Vì n(n + 1)(n - 1) là tích của 3 số tự nhiên liên tiếp

Nên n(n + 1)(n - 1) chia hết cho 6 (2)

Từ (1), (2) => Đpcm

Nguyen
8 tháng 7 2019 lúc 15:52

2)Đề sai. Sửa:

\(n\left(n^2-1\right)\left(3n+6\right)\)\(=3n\left(n-1\right)\left(n+1\right)\left(n+2\right)\)

Theo nguyên lí Dirichle, chắc chắn có 1 số chia hết cho 4.

\(\Rightarrow3n\left(n-1\right)\left(n+1\right)\left(n+2\right)⋮3⋮4=12\)

Vậy ....

Lê Xuân Huy
Xem chi tiết
Lê Tự Phong
1 tháng 12 2017 lúc 20:41

3n+2 chia hết cho 3n+2

=>2.(3n+2)=6n+4 chia hết cho 3n+2

Vì 5n+7 chia hết cho 3n+2 và 6n+4 chia hết cho 3n+2

=>6n+4-(5n+7)=n-3 chia hết cho 3n+2

n-3 chia hết cho 3n+2

=>3.(n-3)=3n-9=3n+2-11chia hết cho 3n+2

Vì 3n+2-11 chi hết cho 3n+2 và 3n+2 chia hết cho 3n+2

=> -11 chia hết cho 3n+2

=>3n+2 thuộc Ư(-11)

=>3n+2={1;-1;-11;11}

=>3n={-1;-3;-13;9}

=>n={-1/3;-1;-13/3;3}

Lê Tự Phong
1 tháng 12 2017 lúc 20:52

Nếu p=2

8p-1=16-1=15 là hợp số trái với đề(TVĐ)

Nếu p=3

8p-1=8.3-1=24-1=23

8p+1=8.3+1=24+1=25 là hợp số

Nếu p>3

TH1:p=3k+1(vì p là số nguyên tố)

8p-1=8.(3k+1)-1=24k+8-1=24k+7

8p+1=8.(3k+1)+1=24k+8+1=24k+9 là hợp số

TH2:p=3k+2 

=>8p-1=8.(3k+2)-1=24k+16-1=24k +15=3.(8k+5) chia hết cho 3

Mà p>3

=>8p-1>3

=>8p-1=8.(3k+2)-1=24k+16-1=24k +15=3.(8k+5) là hợp số(TVĐ)

Vậy nếu 8p - 1 và p là SNT thì 8p + 1là hợp số

Tây Vương
18 tháng 1 2018 lúc 17:15

3n+2 chia hết cho 3n+2

=>2.(3n+2)=6n+4 chia hết cho 3n+2

Vì 5n+7 chia hết cho 3n+2 và 6n+4 chia hết cho 3n+2

=>6n+4-(5n+7)=n-3 chia hết cho 3n+2

n-3 chia hết cho 3n+2

=>3.(n-3)=3n-9=3n+2-11chia hết cho 3n+2

Vì 3n+2-11 chi hết cho 3n+2 và 3n+2 chia hết cho 3n+2

=> -11 chia hết cho 3n+2

=>3n+2 thuộc Ư(-11)

=>3n+2={1;-1;-11;11}

=>3n={-1;-3;-13;9}

=>n={-1/3;-1;-13/3;3}

Đình Hiếu
Xem chi tiết
siêu trộm
18 tháng 3 2015 lúc 22:26

a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để: 
2a + 1 = n^2 (1) 
3a +1 = m^2 (2) 
từ (1) => n lẻ, đặt: n = 2k+1, ta được: 
2a + 1 = 4k^2 + 4k + 1 = 4k(k+1) + 1 
=> a = 2k(k+1) 
vậy a chẵn . 
a chẳn => (3a +1) là số lẻ và từ (2) => m lẻ, đặt m = 2p + 1 
(1) + (2) được: 
5a + 2 = 4k(k+1) + 1 + 4p(p+1) + 1 
=> 5a = 4k(k+1) + 4p(p+1) 
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8 
ta cần chứng minh a chia hết cho 5: 
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9 
xét các trường hợp: 
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 (vô lý) 
a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 (vô lý) 
(vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7) 
a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 (vô lý) 
a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 (vô lý) 
=> a chia hết cho 5 
5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40 
hay : a là bội số của 40

Mạnh Lê
4 tháng 4 2017 lúc 11:03

a = b(mod n) là công thức dùng để chỉ a,b có cùng số dư khi chia cho n, gọi là đồng dư thức .
Ta có các tính chất cua đồng dư thức và các tính chất sau: 
Cho x là số tự nhiên 
Nếu x lẻ thì =\(\Rightarrow\) x^2 =1 (mod 8) 
x2 =-1(mod 5) hoặc x= 0(mod 5) 
Nếu x chẵn thì x= \(-1\)(mod 5) hoặc x2 =1(mod 5) hoặc x= 0(mod 5) 
Vì 2a +1 và 3a+1 là số chính phương nên ta đặt 
3a+1=m^2 
2a+1 =n^2 
=> m^2 -n^2 =a (1) 
m^2 + n^2 =5a +2 (2) 
3n^2 -2m^2=1(rút a ra từ 2 pt rồi cho = nhau) (3) 
Từ (2) ta có (m^2 + n^2 )=2(mod 5) 
Kết hợp với tính chất ở trên ta => m^2=1(mod 5); n^2=1(mod 5) 
=> m^2-n^2 =0(mod 5) hay a chia hết cho 5 
từ pt ban đầu => n lẻ =>n^2=1(mod 8) 
=> 3n^2=3(mod 8) 
=> 3n^2 -1 = 2(mod 8) 
=> (3n^2 -1)/2 =1(mod 8) 
Từ (3) => m^2 = (3n^2 -1)/2 
do đó m^2 = 1(mod 8) 
ma n^2=1(mod 8) 
=> m^2 - n^2 =0 (mod 8) 
=> a chia hết cho 8 
Ta có a chia hết cho 8 và 5 và 5,8 nguyên tố cùng nhau nên a chia hết cho 40.Vậy a là bội của 40 
Nếu bạn không biết đồng dư thức thì .......:))

Nguyen Manh Cuong
1 tháng 4 2018 lúc 7:52

\(⋮\)

Đỗ Thùy Linh
Xem chi tiết
oOo Sát thủ bóng đêm oOo
10 tháng 7 2018 lúc 16:02

Bước đến nhà em bóng xế tà

Đứng chờ năm phút bố em ra

Lơ thơ phía trước vài con chó

Lác đác đằng sau chiếc chổi chà

Sợ quá anh chuồn quên đôi dép

Bố nàng ngoác mỏ đứng chửi cha

Phen này nhất quyết thuê cây kiếm

Trở về chém ổng đứt làm ba

Aeris
Xem chi tiết
Thu Hang Vo Thi
8 tháng 1 2019 lúc 22:46

Bạn tham khảo bài làm của vài bn khác nhé ! ( Ấn vào Câu hỏi tương tự ý )

Mik phải đi ngủ rồi !

-Bye-