CMR nếu 5m+3n thì 3m-n chia hết cho 7
a) Chứng minh rằng với mọi số tự nhiên n thì 6n + 1 và 4n + 1 luôn nguyên tố cùng nhau
b ) Chứng minh rằng nếu 5m + 3n chia hết cho 7 thì 3m - n chia hết cho 7 ( m ; n thuộc N )
Giải hẳn đầu đuôi ra nhé
Tick trước cho ai trả lời mà mìk cảm thấy đúng
Cho \(m,n\in Z\). CMR:
a, \(m^3n-n^3m\) chia hết cho 6
b, \(m^5n-n^5m\) chia hết cho 30
1, Tìm n bt 5n +7 chia hết cho 3n+2
2, CMR : Nếu 8p - 1 và p là các số nguyên tố thì 8p + 1 là hợp số.
3, cmr : 10^2011 + 8 chia hết cho 72.
Ai giúp mình vs
tìm n biết 5n+7 chia hết cho 3n+2
cmr: Nếu 8p-1 và p là các số nguyên tố thì 8p+1 là hợp số
Cho n € N. CMR:
1) Nếu n không chia hết cho 7 thì n^3+1 chia hết cho 7 hoặc n^3-1 chia hết cho 7
2) n(n^2-1)(3n+3) chia hết cho 12
3) n(n+1)(2n+1) chia hết cho 6
1) Đặt A = n6 - 1 = ( n3 - 1)( n3 + 1) = ( n - 1)( n2 + n + 1)( n +1)(n2 - n + 1)
Nếu n không chia hết cho 7 thì:
Xét nếu n = 7k + 1 thì n - 1 = 7k + 1 - 1 = 7k chia hết cho 7 nên A chia hết cho 7
Nếu n = 7k + 2 thì n2 + n + 1 = (7k + 2)2 + 7k + 2 + 1 = 7(7k2 +3k+1) chia hết cho 7 nên A chia hết cho 7
Tương tự đến trường hợp n = 7k + 6
=> Nếu n không chia hết cho 7 thì n6 - 1 chia hết cho 7
Mà n6 - 1 = (n3 - 1)(n3 + 1)
Do đó: n3 - 1 chia hết cho 7 hoặc n3 - 1 chia hết cho 7
3) n(n + 1)(2n + 1)
= n(n + 1)[(n + 2) + (n - 1)]
= n(n + 1)(n + 2) + n(n + 1)(n - 1)
Vì n(n + 1)(n + 2) là tích của ba số tự nhiên liên tiếp
Nên n(n + 1)(n + 2) chia hết cho 6 (1)
Vì n(n + 1)(n - 1) là tích của 3 số tự nhiên liên tiếp
Nên n(n + 1)(n - 1) chia hết cho 6 (2)
Từ (1), (2) => Đpcm
2)Đề sai. Sửa:
\(n\left(n^2-1\right)\left(3n+6\right)\)\(=3n\left(n-1\right)\left(n+1\right)\left(n+2\right)\)
Theo nguyên lí Dirichle, chắc chắn có 1 số chia hết cho 4.
\(\Rightarrow3n\left(n-1\right)\left(n+1\right)\left(n+2\right)⋮3⋮4=12\)
Vậy ....
Tìm n biết : 5n + 7 chia hết chọn 3n + 2
CMR : nếu 8p - 1 và p là SNT thì 8p + 1là hợp số
3n+2 chia hết cho 3n+2
=>2.(3n+2)=6n+4 chia hết cho 3n+2
Vì 5n+7 chia hết cho 3n+2 và 6n+4 chia hết cho 3n+2
=>6n+4-(5n+7)=n-3 chia hết cho 3n+2
n-3 chia hết cho 3n+2
=>3.(n-3)=3n-9=3n+2-11chia hết cho 3n+2
Vì 3n+2-11 chi hết cho 3n+2 và 3n+2 chia hết cho 3n+2
=> -11 chia hết cho 3n+2
=>3n+2 thuộc Ư(-11)
=>3n+2={1;-1;-11;11}
=>3n={-1;-3;-13;9}
=>n={-1/3;-1;-13/3;3}
Nếu p=2
8p-1=16-1=15 là hợp số trái với đề(TVĐ)
Nếu p=3
8p-1=8.3-1=24-1=23
8p+1=8.3+1=24+1=25 là hợp số
Nếu p>3
TH1:p=3k+1(vì p là số nguyên tố)
8p-1=8.(3k+1)-1=24k+8-1=24k+7
8p+1=8.(3k+1)+1=24k+8+1=24k+9 là hợp số
TH2:p=3k+2
=>8p-1=8.(3k+2)-1=24k+16-1=24k +15=3.(8k+5) chia hết cho 3
Mà p>3
=>8p-1>3
=>8p-1=8.(3k+2)-1=24k+16-1=24k +15=3.(8k+5) là hợp số(TVĐ)
Vậy nếu 8p - 1 và p là SNT thì 8p + 1là hợp số
3n+2 chia hết cho 3n+2
=>2.(3n+2)=6n+4 chia hết cho 3n+2
Vì 5n+7 chia hết cho 3n+2 và 6n+4 chia hết cho 3n+2
=>6n+4-(5n+7)=n-3 chia hết cho 3n+2
n-3 chia hết cho 3n+2
=>3.(n-3)=3n-9=3n+2-11chia hết cho 3n+2
Vì 3n+2-11 chi hết cho 3n+2 và 3n+2 chia hết cho 3n+2
=> -11 chia hết cho 3n+2
=>3n+2 thuộc Ư(-11)
=>3n+2={1;-1;-11;11}
=>3n={-1;-3;-13;9}
=>n={-1/3;-1;-13/3;3}
CMR nếu 2n+1 và 3n+1 đều là số chính phương thì n chia hết cho 40.
a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:
2a + 1 = n^2 (1)
3a +1 = m^2 (2)
từ (1) => n lẻ, đặt: n = 2k+1, ta được:
2a + 1 = 4k^2 + 4k + 1 = 4k(k+1) + 1
=> a = 2k(k+1)
vậy a chẵn .
a chẳn => (3a +1) là số lẻ và từ (2) => m lẻ, đặt m = 2p + 1
(1) + (2) được:
5a + 2 = 4k(k+1) + 1 + 4p(p+1) + 1
=> 5a = 4k(k+1) + 4p(p+1)
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8
ta cần chứng minh a chia hết cho 5:
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9
xét các trường hợp:
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 (vô lý)
a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 (vô lý)
(vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7)
a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 (vô lý)
a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 (vô lý)
=> a chia hết cho 5
5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40
hay : a là bội số của 40
a = b(mod n) là công thức dùng để chỉ a,b có cùng số dư khi chia cho n, gọi là đồng dư thức .
Ta có các tính chất cua đồng dư thức và các tính chất sau:
Cho x là số tự nhiên
Nếu x lẻ thì =\(\Rightarrow\) x^2 =1 (mod 8)
x2 =-1(mod 5) hoặc x2 = 0(mod 5)
Nếu x chẵn thì x2 = \(-1\)(mod 5) hoặc x2 =1(mod 5) hoặc x2 = 0(mod 5)
Vì 2a +1 và 3a+1 là số chính phương nên ta đặt
3a+1=m^2
2a+1 =n^2
=> m^2 -n^2 =a (1)
m^2 + n^2 =5a +2 (2)
3n^2 -2m^2=1(rút a ra từ 2 pt rồi cho = nhau) (3)
Từ (2) ta có (m^2 + n^2 )=2(mod 5)
Kết hợp với tính chất ở trên ta => m^2=1(mod 5); n^2=1(mod 5)
=> m^2-n^2 =0(mod 5) hay a chia hết cho 5
từ pt ban đầu => n lẻ =>n^2=1(mod 8)
=> 3n^2=3(mod 8)
=> 3n^2 -1 = 2(mod 8)
=> (3n^2 -1)/2 =1(mod 8)
Từ (3) => m^2 = (3n^2 -1)/2
do đó m^2 = 1(mod 8)
ma n^2=1(mod 8)
=> m^2 - n^2 =0 (mod 8)
=> a chia hết cho 8
Ta có a chia hết cho 8 và 5 và 5,8 nguyên tố cùng nhau nên a chia hết cho 40.Vậy a là bội của 40
Nếu bạn không biết đồng dư thức thì .......:))
Cmr:(2m-3)×(3n-2)-(3m-2)×(2n-3) chia hết cho 5 với mọi số nguyên m,n.
Bước đến nhà em bóng xế tà
Đứng chờ năm phút bố em ra
Lơ thơ phía trước vài con chó
Lác đác đằng sau chiếc chổi chà
Sợ quá anh chuồn quên đôi dép
Bố nàng ngoác mỏ đứng chửi cha
Phen này nhất quyết thuê cây kiếm
Trở về chém ổng đứt làm ba
CMR: nếu 2n+1 và 3n+1 đều là các số chính phương thì n chia hết cho 40
Bạn tham khảo bài làm của vài bn khác nhé ! ( Ấn vào Câu hỏi tương tự ý )
Mik phải đi ngủ rồi !
-Bye-