Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phamducluong
Xem chi tiết
Đức chung Nguyễn
Xem chi tiết
Thanh Tùng DZ
19 tháng 4 2019 lúc 14:36

A = -x2 - 3y2 - 2xy + 10x + 14y - 18

A = -x2 - y2 -25 + 10x +10y -2xy -2y2 + 4y -2 + 9

A = -(x2 + y2 + ( -5 )2 - 10x - 10y + 2xy ) - 2 (y2 - 2y + 1 )  + 9

A = -( x + y - 5 )2 - 2 ( y - 1 )2 + 9 

-( x + y - 5 )2  \(\le\)0 ; - 2 ( y - 1 )2 \(\le\)0

\(\Rightarrow\)A  \(\le\)0 + 0 + 9 = 9

Dấu " = " xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+y-5=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}}\)

Nguyễn Như Quỳnh
Xem chi tiết
tth_new
28 tháng 4 2019 lúc 16:21

\(A=\left(-x^2-2xy-y^2\right)-2y^2+\left(10x+10y\right)+4y-18\)

\(=-\left(x+y\right)^2+2\left(x+y\right).5-\left(2y^2-4y+2\right)-16\)

\(=-\left[\left(x+y\right)^2-2\left(x+y\right).5+5^2\right]-2\left(y-1\right)^2+9\)

\(=-\left(x+y-5\right)^2-2\left(y-1\right)^2+9\le9\forall x;y\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y-5=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5-y\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)

Vậy \(A_{max}=9\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)

Đỗ Duy Kiên
14 tháng 4 2020 lúc 9:42

ko biết

Khách vãng lai đã xóa
Phạm Ngọc Quân
14 tháng 4 2020 lúc 9:42

bít chết liền

Khách vãng lai đã xóa
Trịnh Dung
Xem chi tiết
Xuân Hoàng Nguyễn
Xem chi tiết
Hà Phạm Như Ý
Xem chi tiết
Trân Vũ
Xem chi tiết
Dương Ngọc Vy
3 tháng 5 2019 lúc 18:24

A = -x2 - 2xy - y2 - 2y2 + 10x + 10y + 4y - 25 + 7
= (-x2 - 2xy - y2 + 10x + 10y - 25) - 2y2 + 4y + 7
= -(x2 + 2xy + y2 - 10x - 10y + 25) - (2y2 - 4y - 7)
= -[(x+y)2 - 10(x+y) + 25] - (2y2 - 4y + 2 - 9)
= -(x + y - 5)2 - 2(y2 - 2y + 1) + 9
= -(x + y - 5)2 - 2(y - 1)2 + 9 ≤ 9
Dấu ''='' xảy ra <=> x + y - 5 = 0 và y -1 =0
<=> x + y = 5 và y = 1
<=> x = 4 và y = 1
Vậy max A = 9 <=> x = 4 và y = 1 .
- Mình chúc bạn học tốt nhé !

Hà Phạm Như Ý
Xem chi tiết
Luhan Hyung
30 tháng 10 2016 lúc 8:30

Xét mẫu: \(^{-\left(x^2-2xy+10x+3y^2-14y-1983\right)}\)

\(=-\left(x^2-2x.\left(y-5\right)+\left(y-5\right)^2-\left(y-5\right)^2+3y^2-14y-1983\right)\)

\(=-\left(\left(x-y+5\right)^2-\left(y^2-10y+25\right)+3y^2-14y-1983\right)\)

\(=-\left(\left(x-y+5\right)^2-y^2+10y-25+3y^2-14y-1983\right)\)

\(=-\left(\left(x-y+5\right)^2+2y^2-4y-2008\right)\)

\(=-\left(\left(....\right)^2+2.\left(y^2-2y+1\right)-2010\right)\)

\(=\left(\left(...\right)^2+2.\left(y-1\right)^2-2010\right)\)

Mình không biết là đề có sai sót gì không, theo mình thì đến đây chứng minh được cái trong ngoặc >= 0 nhưng cái này lại >= -2010, bạn cứ soát lại nha nhỡ đâu có chỗ mình nhầm. Cách làm này là đúng, k cho mình nha

Luhan Hyung
30 tháng 10 2016 lúc 8:19

Bạn chờ mình chút, bài này hơi dài

ngoc tram
Xem chi tiết
hya_seije_jaumeniz
28 tháng 7 2018 lúc 19:45

\(E=1983-x^2-3y^2+2xy-10x+14y\)

\(-E=x^2+3y^2-2xy+10x-14y-1983\)

\(-E=\left(x^2-2xy+y^2\right)+2y^2+10x-14y-1983\)

\(-E=\left[\left(x-y\right)^2+2\left(x-y\right).5+25\right]\)\(+2\left(y^2-2y+1\right)+1956\)

\(-E=\left(x-y+5\right)^2+2\left(y-1\right)^2+1956\)

Do  \(\left(x-y+5\right)^2\ge0\forall x;y\)

             \(2\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow-E\ge1956\Leftrightarrow E\le-1956\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}x-y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=1\end{cases}}\)

Vậy ...