\(\frac{2^5\times7+2^5}{2^5\times5^2-2^5\times3}\)
Help me!!!
Tính nhanh : \(\frac{1}{1\times3\times5}+\frac{1}{3\times5\times7}+\frac{1}{5\times7\times9}+.....+\frac{1}{45\times47\times49}\) Help me . Mình cần gấp , HELP
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{3.5.7}+...+\frac{1}{45.47.49}\)
\(\Rightarrow4A=\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{45.47.49}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{45.47}-\frac{1}{47.49}\)
\(=\frac{1}{3}-\frac{1}{47.49}\)
\(\Rightarrow A=\frac{\frac{1}{3}-\frac{1}{47.49}}{4}=\frac{575}{6909}\)
a,\(\frac{3^{10}\times(-5)^{21}}{\left(-5\right)^{20}\times3^{12}}\)
b,\(\frac{\left(-11\right)^5\times13^7}{11^5\times13^8}\)
c,\(\frac{2^{10}\times3^{10}-2^{10}\times3^9}{2^9\times3^{10}}\)
d,\(\frac{5^{11}\times7^{12}+5^{11}\times7^{11}}{5^{12}\times7^{12}+9\times5^{11}\times7^{11}}\)
Bài trên là bài rút gon phân số
\(a)\frac{3^{10}.\left(-5\right)^{21}}{\left(-5\right)^{20}.3^{12}}=\frac{-5}{3^2}=\frac{-5}{9}\)
\(b)\frac{-11.13^7}{11^5.13^8}=\frac{-1}{11^4.13}\) (Bạn xem thử xem có sai đề không nhé)
\(c)\frac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}=\frac{2^{10}.3^9\left(3+1\right)}{2^9.3^{10}}=\frac{2.4}{3}=\frac{8}{3}\)
\(d)\frac{5^{11}.7^{12}+5^{11}.7^{11}}{5^{12}.7^{12}+9.5^{11}.7^{11}}=\frac{5^{11}.7^{11}\left(7+1\right)}{5^{11}.7^{11}\left(5.4+9\right)}=\frac{8}{20+9}=\frac{8}{29}\)
\(a)\frac{3^{10}\cdot\left(-5\right)^{21}}{\left(-5\right)^{20}\cdot3^{12}}=\frac{-5}{3^2}=\frac{-5}{9}\)
\(b)\frac{\left(-11\right)\cdot13^7}{11^5\cdot13^8}=\frac{-1}{11^4\cdot13}=\frac{-1}{14641\cdot13}=\frac{-1}{190333}\)
\(c)\frac{2^{10}\cdot3^{10}-2^{10}\cdot3^9}{2^9\cdot3^{10}}=\frac{2^{10}\left(3^{10}-3^9\right)}{2^9\cdot3^{10}}=\frac{2^{10}\cdot3^9\left(3-1\right)}{2^9\cdot3^{10}}=\frac{2^{10}\cdot3^9\cdot2}{2^9\cdot3^{10}}=\frac{2\cdot2}{3}=\frac{4}{3}\)
\(A=\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+....+\frac{2}{13\times15}\)
Ta có :
A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\)
A = \(\frac{1}{1}-\frac{1}{15}\)
A = \(\frac{14}{15}\)
Ủng hộ mik nhá ^_^"
\(A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\)
\(A=1-\frac{1}{15}\)
\(A=\frac{14}{15}\)
Chúc bạn zui~^^
TÍNH NHANH:\(\frac{1}{1\times3\times5}+\frac{1}{2\times5\times8}+\frac{1}{3\times5\times7}+\frac{1}{5\times8\times11}+\frac{1}{5\times7\times9}+\frac{1}{8\times11\times14}+...+\frac{1}{995\times997\times999}+\frac{1}{1493\times1496\times1499}\)
Đây là tổng của 2 dãy:
\(\frac{1}{1\times3\times5}+\frac{1}{3\times5\times7}+\frac{1}{5\times7\times9}+...+\frac{1}{995\times997\times999}\)(1)
và
\(\frac{1}{2\times5\times8}+\frac{1}{5\times8\times11}+\frac{1}{8\times11\times14}+...+\frac{1}{1493\times1496\times1499}\)(2)
Dãy số có dạng là tích 3 thừa số, trong đó thừa số thứ 3 hơn thừa số thứ nhất n đơn vị và 2 thừa số cuối của phân số trước là 2 thừa số đầu của phân số sau. Để tính dãy kiểu này cần đưa tử số về hiệu của thừa số thứ 3 và thừa số thứ nhất (hiệu = n):
Vậy nhân dãy thứ nhất với 4:
\(=\frac{4}{1\times3\times5}+\frac{4}{3\times5\times7}+\frac{4}{5\times7\times9}+...+\frac{4}{995\times997\times999}\)
Nhận xét:
\(\frac{4}{1\times3\times5}=\frac{5-1}{1\times3\times5}=\frac{5}{1\times3\times5}-\frac{1}{1\times3\times5}=\frac{1}{1\times3}-\frac{1}{3\times5}\)\(\frac{4}{3\times5\times7}=\frac{7-3}{3\times5\times7}=\frac{7}{3\times5\times7}-\frac{3}{3\times5\times7}=\frac{1}{3\times5}-\frac{1}{5\times7}\)Vậy 4 lần tổng dãy 1 là:
\(\frac{1}{1\times3}-\frac{1}{3\times5}+\frac{1}{3\times5}-\frac{1}{5\times7}+...+\frac{1}{995\times997}-\frac{1}{997\times999}\)
\(\frac{1}{1\times3}-\frac{1}{997\times999}\)
Suy ra tổng dãy (1) là \(\left(\frac{1}{3}-\frac{1}{997\times999}\right)\times\frac{1}{4}\)
Làm tương tự tính được tổng dãy (2) là: \(\left(\frac{1}{2\times5}-\frac{1}{1496\times1499}\right)\times\frac{1}{6}\)
Cộng 2 kết quả lại được tổng cần tính
Tính nhanh
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\)
\(=\frac{1}{1}-\frac{1}{11}=\frac{10}{11}\)
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{9.11}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
tính :\(\frac{1}{1\times2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+\frac{1}{4\times5\times6}+\frac{1}{5\times6\times7}+\frac{1}{6\times7\times8}+\frac{1}{7\times8\times9}+\frac{1}{8\times9\times10}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
Tính \(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{77\times79}\)
Ta có :
2/1.3 + 2/3.5 + 2/5.7+ ... + 2/77.79
= (3-1)/1.3 + (5-3)/3.5 + (7-5)/5.7 + ... + (79-77)/77.79
= 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/77 - 1/79
= 78/79
hihii :"> xong rồi đó em :)) chị chúc em học giỏi nha :)) nhớ cho chị nhiều điểm nha :* iu em nhều
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
Chúc mày học ngu
\(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+.....+\frac{2}{x\times\left(x+2\right)}=\frac{2015}{2016}\)
Bài làm
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{x.\left(x+2\right)}=\frac{2015}{2016}\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2015}{2016}\)
\(1-\frac{1}{x+2}=\frac{2015}{2016}\)
\(\frac{1}{x+2}=\frac{1}{2016}\)
\(\Rightarrow x+2=2016\)
\(x=2014\)
Phương trình
<=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{2015}{2016}\)
<=> \(1-\frac{1}{x+2}=\frac{2015}{2016}\)
=> x=2014
Vậy x=2014
Tim n thuộc N
A = \(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{n\times\left(n+2\right)}<\frac{2015}{2016}\)