tỉm x biết
\(a-\dfrac{1}{a+1}=\dfrac{2}{a^2-1}\) với a là hằng số
Tìm x :
a) \(x+\dfrac{a}{a^2-b^2}=\dfrac{1}{a+b}\) (a,b là hằng số)
b) \(x-\dfrac{1}{\left(a+b\right)^2}=\dfrac{1}{\left(a-b\right)^2}\) ( a, b là hằng số )
a: \(x=\dfrac{1}{a+b}-\dfrac{a}{\left(a-b\right)\left(a+b\right)}=\dfrac{a-b-a}{\left(a-b\right)\left(a+b\right)}=\dfrac{-b}{\left(a-b\right)\left(a+b\right)}\)
b: \(x=\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(a+b\right)^2}\)
\(=\dfrac{a^2+2ab+b^2+a^2-2ab+b^2}{\left(a^2-b^2\right)^2}=\dfrac{2a^2+2b^2}{\left(a^2-b^2\right)^2}\)
\(a.\dfrac{2}{a}x^2y^3z\left(-x^3yz\right)\) (a,b là hằng số)
\(b.-ax\left(xy^3\right)\dfrac{1}{4}\left(-by\right)^3\) (a,b là hằng số)
a: \(=-\dfrac{2}{a}\cdot x^2\cdot x^3\cdot y^3\cdot y\cdot z^2=-\dfrac{2}{a}x^5y^4z^2\)
b: \(=-a\cdot\dfrac{1}{4}\cdot\left(-b\right)^3\cdot x\cdot xy^3\cdot y^3=\dfrac{1}{4}ab^3x^2y^6\)
a, \(=\dfrac{-2x^5y^3z^2}{a}\)
b, \(=-\dfrac{xa\left(xy^3\right).1\left(-b^3y^3\right)}{4}=\dfrac{xa\left(b^3xy^6\right)}{4}=\dfrac{x^2ab^3y^6}{4}\)
Chứng minh bất đẳng thức: \(\left(1+a\right)^x>\dfrac{x\left(x-1\right)}{2}a^2\) với x là biến và a là hằng số dương bất kì
Giải phương trình:
a, \(\dfrac{t}{2a}-\dfrac{4a}{3}=1\)
b, \(\dfrac{x-2a}{b}=2+\dfrac{x+b}{a}\) (a, b là các hằng số)
Cho đa thức \(P\left(x\right)=ax^2+bx+c\). Trong đó \(a,b,c\) là các hằng số thỏa mãn \(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\) và \(a\ne0\). Tính \(\dfrac{P\left(-2\right)-3P\left(1\right)}{a}\).
P(x)=\(ax^2+bx+c\) (1)(a\(\ne0\) )
Ta có :
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\)\(\Rightarrow\left\{{}\begin{matrix}b=2a\\c=3a\end{matrix}\right.\)(2)
Thay(2) vào (1)\(\Rightarrow P\left(x\right)=ax^2+2ax+3a\)
\(\Rightarrow\dfrac{P\left(-2\right)-3P\left(-1\right)}{a}=\dfrac{4a-4a+3a-3\left(a-2a+3a\right)}{a}\)=\(\dfrac{3a-3a+6a-9a}{a}=\dfrac{-3a}{a}=-3\)
Xác định các hằng số a,b biết:
\(\dfrac{3x+1}{\left(x+1\right)^3}=\dfrac{a}{\left(x+1\right)^3}+\dfrac{b}{\left(x+1\right)^2}\)
giải BPT với a là hằng số :
\(\dfrac{x+1}{a}+ax>\dfrac{x+2}{a}-2x\)
\(\dfrac{x+1}{a}+ax>\dfrac{x+2}{a}-2x\)
⇔ \(\dfrac{x}{a}+\dfrac{1}{a}+ax>\dfrac{x}{a}+\dfrac{2}{a}-2x\) ( a # 0)
⇔ \(ax+2x>\dfrac{2}{a}-\dfrac{1}{a}\)
⇔ \(x\left(a+2\right)>\dfrac{1}{a}\) ( 1)
+) Với : a = -2 , ta có :
( 1) ⇔ 0x > \(\dfrac{-1}{2}\) ( Luôn đúng )
+) Với : a > -2 , ta có :
( 1) ⇔x > \(\dfrac{1}{a\left(a+2\right)}\)
+) Với : a < - 2 , ta có :
⇔ x < \(\dfrac{1}{a\left(a+2\right)}\)
KL...
Biết \(\xrightarrow[x->1]{lim}\dfrac{\sqrt{3x^2+2}-\sqrt{4+x}}{x^2-1}=\dfrac{\sqrt{a}}{b}\)
với a,b là số tự nhiên và \(\dfrac{a}{b}\) là phân số tối giản. Tính a-b
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3x^2+2}-\sqrt{4+x}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{3x^2-x-2}{\sqrt{3x^2+2}+\sqrt{4+x}}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{3x+2}{\left(x+1\right)\left(\sqrt{3x^2+2}+\sqrt{4+x}\right)}=\dfrac{5}{2.2\sqrt{5}}=\dfrac{\sqrt{5}}{4}\).
Từ đó a = 5; b = 4 nên a - b = 1.
Giai phương trình với a là hằng số.
a) a(ax+1) = x(a+2)+2
b)\(\dfrac{x-a}{3}=\dfrac{x+3}{a}-2\)
a: =>x*a^2+a=x(a+2)+2
=>x(a^2-a-2)=-a+2
=>x(a-2)(a+1)=-(a-2)
Để phương trình có nghiệm duy nhất thì (a-2)(a+1)<>0
=>\(a\notin\left\{2;-1\right\}\)
Để phương trình vô nghiệm thì a+1=0
=>a=-1
Để PT có vô số nghiệm thì a-2=0
=>a=2
b: ĐKXĐ: a<>0
\(\Leftrightarrow a\left(x-a\right)=3\left(x+3\right)-6a\)
\(\Leftrightarrow ax-a^2-3x-9+6a=0\)
\(\Leftrightarrow x\left(a-3\right)=a^2-6a+9=\left(a-3\right)^2\)
Nếu a=3 thì PT có vô số nghiệm
Nếu a<>3 và a<>0 thì PT có nghiệm duy nhất là x=a-3
giải phương trình sau
\(\dfrac{x-a}{a+3}+\dfrac{x-3}{a-3}=\dfrac{6a}{9-a^2}\)với a là hằng số
ĐKXĐ: x\(\ne3,x\ne-3\)
\(\Rightarrow\left(x-a\right)\left(a-3\right)+\left(x+3\right)\left(a+3\right)=-6a\)
\(\Leftrightarrow xa-3x-a^2+3a+ax+3x+3a+3=-6a\)
\(\Leftrightarrow2ax-a^2+12a+3=0\) \(\Leftrightarrow2ax=a^2-12a-3\Leftrightarrow x=\dfrac{a^2}{2}-6a-\dfrac{3}{2}\)(TM)
Vậy...