Tìm số tự nhiên n để B=n^4-n^3-6n^2+7n-21 là số nguyên tố
Tìm số tự nhiên n để:
\(B=n^4-n^3-6n^2+7n-21\) là số nguyên tố
\(B=\left(n^4-3n^3\right)+\left(2n^3-6n^2\right)+\left(7n-21\right)\)
\(=n^3\left(n-3\right)+2n^2\left(n-3\right)+7\left(n-3\right)\)
\(=\left(n^3+2n^2+7\right)\left(n-3\right)\)
Dễ thấy \(n^3+2n^2+7>n-3\), mà số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó.
\(\Rightarrow n-3=1\)
\(\Rightarrow n=4\)
Thử lại : \(B=103\left(TM\right)\)
Bài 1. Tìm số tự nhiên a nhỏ nhất để a : 7 dư 4; a : 9 dư 5 và a : 15 dư 8.
Bài 2. a) Tìm số tự nhiên n để 16 – 3n là ước của 2n + 1.
b) Tìm số tự nhiên n để n2 + 6n là số nguyên tố.
Bài 3. a) Tìm số nguyên tố p sao cho p + 2; p + 6; p + 8; p + 12; p + 14 cũng là số nguyên tố
b) Tìm số tự nhiên n để các số sau nguyên tố cùng nhau: 4n – 3 và 6n + 1
tìm các số tự nhiên n để các số có dạng sau là số nguyên tố
a/ n^3 -n^2+n-1
b/ n^3-6n+4
Tìm số tự nhiên n lớn nhất để n^3-n^2-7n+1 là số nguyên tố
Tìm số tự nhiên n lớn nhất để n^3-n^2-7n-1 là số nguyên tố
Tìm số tự nhiên n để n^3-n^2-7n+1 là số nguyên tố lớn nhất.
\(U\left(n\right)=n^3-n^2-7n+1\)
U(0)=1;U(2)==-9;U(3)=-1;U(4)=21
Đặt n=(p+4) {xét luôn dương đỡ loạn)
\(U\left(p\right)=p^3+11p^2+40p+21\) (*)Với P thuộc N => U(P) luôn dương
\(U\left(p\right)=p^3+2p^2+p+\left(9p^2+39p+21\right)\)(**)
\(U\left(p\right)=p\left(p+1\right)^2+\left(9p^2+39p+21\right)\)(***)
với p=3 U(3)=27+11.9+40.3+21=89 nguyên tố (nhận)
với p> 3 p=3k hiển nhiên (**) U(p) không nguyên tố
với p=3k+2=> (p+1)=3k+3 chia hết cho 3=> U(p) không nguyên tố
với p=3k+1=>p(p+1)^2 chia 3 dư 1
xét tiếp:
với k =2t+1 hiển nhiên p chẵn => (***) H(p) chia hết cho 2 loại
=> P có dạng 6k+1: với k=1=>P=7 \(\frac{U\left(7\right)}{7}=169=13^2\)Loại
"thôi quá dài -xét tiếp có lẽ => U(p) hợp số nhưng mỏi lắm:
Tạm chấp nhận p=3; n=7 (c/m hoàn chỉnh hoặc tìm ra con nào lớn hơn 89 dành cho @Ailibaba)
Xem lại bài giải nhé ngonhuminh. 89 có là giá trị làm cho n tự nhiên không nhé. Cho ngonhuminh 1 đáp án lớn hơn nè. Với n = 6 thì số cần tìm là 139
tìm số tự nhiên n để n^3-n^2-7n+1 là số nguyên tố
Tìm tất cả các số tự nhiên n để n^3-n^2-7n+10 là số nguyên tố
Ta có:\(P=n^3-n^2+7n+10\)
\(=n^3-2n^2+n^2-2n-5n+10\)
\(=n^2\left(n-2\right)+n\left(n-2\right)-5\left(n-2\right)\)
\(=\left(n-2\right)\left(n^2+n-5\right)\)
Vì P là số nguyên tố nên
\(n-2=1\Rightarrow n=3\)(nhận)
\(n^2+n-5=1\)\(\Rightarrow n^2+n-6=0\Rightarrow\left(n+3\right)\left(n-2\right)=0\Rightarrow n=-3\left(l\right);n=2\left(n\right)\)
Ta có:\(\hept{\begin{cases}n=3\Rightarrow P=7\left(n\right)\\n=2\Rightarrow P=0\left(l\right)\end{cases}}\)
Vậy n=3
\(P=n^3-n^2-7n+10=\left(n-2\right)\left(n^2+n-5\right)\)
- Với \(n-2< 0\Leftrightarrow n< 2\).
Bằng cách thử trực tiếp \(n=0,n=1\)thu được \(n=1\)thỏa mãn \(P=3\)là số nguyên tố.
- Với \(n-2\ge0\)thì \(n-2\ge0,n^2+n-5>0\)khi đó \(P\)có hai ước tự nhiên là \(n-2,n^2+n-5\).
Để \(P\)là số nguyên tố thì:
\(\orbr{\begin{cases}n-2=1\\n^2+n-5=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}n=3\\n=2,n=-3\end{cases}}\)
Thử lại các giá trị trên thu được \(n=3\)thì \(P=7\)thỏa mãn.
Vậy \(n=1\)hoặc \(n=3\).