Giải bất phương trình sau: \(\frac{x}{x+1}-2\sqrt{\frac{x+1}{x}}>3\)
Giải bất phương trình sau : \(2\sqrt{1-\frac{2}{x}}+\sqrt{2x+\frac{8}{x}}\ge x\)
Mọi người giúp mình bài này với
Giải các bất phương trình sau (ưu tiên giải bằng phương pháp đặt ẩn phụ):
a, \(4 \sqrt{x}+\frac{2}{\sqrt{x}}<2 x+\frac{1}{2 x}+2\)
b, \(\frac{1}{1-x^{2}}>\frac{3 x}{\sqrt{1-x^{2}}}-1\)
c,\(\sqrt{\frac{1}{x^{2}}-\frac{3}{4}}<\frac{1}{x}-\frac{1}{2}\)
d, \(x+\frac{x}{\sqrt{x^{2}-1}}>\frac{35}{12}\)
Mình cảm ơn nhiều ạ.
a) \(4\sqrt{x}+\frac{2}{\sqrt{x}}< 2x+\frac{1}{2x}+2\)
hay \(2\sqrt{x}+\frac{1}{\sqrt{x}}< x+\frac{1}{4x}+1\)
\(\Leftrightarrow0< x+\frac{1}{4x}+1-2\sqrt{x}-\frac{1}{\sqrt{x}}\)
\(\Leftrightarrow0< \left(\sqrt{x}\right)^2-2\sqrt{x}-2\sqrt{x}\cdot1+1+\frac{1}{\left(2\sqrt{x}\right)^2}-2\cdot\frac{1}{2\sqrt{x}}\)
\(\Leftrightarrow1< \left(\sqrt{x}-1\right)^2+\left(\frac{1}{2\sqrt{x}}-1\right)^2\)
\(\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}>1\\2\sqrt{x}>1\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>\frac{1}{4}\end{cases}\Rightarrow}x>1}\)
b) \(\frac{1}{1-x^2}>\frac{3}{\sqrt{1-x^2}}-1\left(1\right)\left(ĐK:-1< x< 1\right)\)
Ta có (1) <=> \(\frac{1}{1-x^2}-1-\frac{3x}{\sqrt{1-x^2}}+2>0\)\(\Leftrightarrow\frac{x^2}{1-x^2}-\frac{3x}{\sqrt{1-x^2}}+2>0\)
Đặt \(t=\frac{x}{\sqrt{1-x^2}}\)ta được
\(t^2-3t+2>0\Leftrightarrow\orbr{\begin{cases}\frac{x}{\sqrt{1-x^2}}< 1\\\frac{x}{\sqrt{1-x^2}}>2\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{1-x^2}>x\left(a\right)\\2\sqrt{1-x^2}< x\left(b\right)\end{cases}}}\)
(a) <=> \(\hept{\begin{cases}x< 0\\1-x^2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\1-x^2>x^2\end{cases}}}\)
\(\Leftrightarrow-1< x< 0\)hoặc \(\hept{\begin{cases}x\ge0\\x^2< \frac{1}{2}\end{cases}}\)
\(\Leftrightarrow-1< x< 0\)hoặc \(0\le x\le\frac{\sqrt{2}}{2}\Leftrightarrow-1< x< \frac{\sqrt{2}}{2}\)
(b) \(\Leftrightarrow\hept{\begin{cases}1-x^2>0\\x>0\\4\left(1-x^2\right)< x^2\end{cases}\Leftrightarrow\hept{\begin{cases}0< x< 1\\x^2>\frac{4}{5}\end{cases}\Leftrightarrow}\frac{2}{\sqrt{5}}< x< 1}\)
ok đợi nấu ăn xong r làm cho
a) điều kiện x>0
khi đó
\(\left(a\right)\Leftrightarrow4\left(\sqrt{4}+\frac{1}{2\sqrt{x}}\right)< 2\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)^2\)
\(\Leftrightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}>2\Leftrightarrow2x-4\sqrt{x}+1>0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}< \frac{2-\sqrt{2}}{2}\\\sqrt{x}>\frac{2+\sqrt{2}}{2}\end{cases}}\)
Giải bất phương trình sau:
\(2\sqrt{1-\frac{2}{x}}+\sqrt{2x-\frac{8}{x}}\ge x\)
ĐK: \(\hept{\begin{cases}1-\frac{2}{x}\ge0\\2x-\frac{8}{x}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x-2}{x}\ge0\\\frac{2x^2-8}{x}\ge0\end{cases}}\)
<=> \(-2\le x< 0\) hoặc \(x\ge2\)
TH1: \(-2\le x< 0\)
Bất phương trình đúng
TH2: \(x\ge2\)(@@)
bất pt <=> \(2\sqrt{\frac{x-2}{x}}+\sqrt{\frac{2\left(x-2\right)\left(x+2\right)}{x}}\ge x\)
<=> \(\sqrt{\frac{x-2}{x}}\left(2+\sqrt{2\left(x+2\right)}\right)\ge x\)
<=> \(\sqrt{\frac{x-2}{x}}\left(\frac{2x}{\sqrt{2\left(x+2\right)}-2}\right)\ge x\)
<=> \(2\sqrt{\frac{x-2}{x}}+2\ge\sqrt{2\left(x+2\right)}\)
<=> \(4\left(1-\frac{2}{x}\right)+4+8\sqrt{1-\frac{2}{x}}\ge2x+4\)
<=> \(4\sqrt{1-\frac{2}{x}}\ge x-2+\frac{4}{x}\)
<=> \(16\left(1-\frac{2}{x}\right)\ge x^2+4+\frac{16}{x^2}-4x+8-\frac{16}{x}\)
<=> \(4\ge x^2+\frac{16}{x^2}-4x+\frac{16}{x}\)
<=> \(\left(x-\frac{4}{x}\right)^2-4\left(x-\frac{4}{x}\right)+4\le0\)
<=> \(\left(x-\frac{4}{x}+2\right)^2\le0\) vô nghiệm vì x > 2 => \(x-\frac{4}{x}+2>2\)
Vậy -2 \(\le\) x < 0
Giải bất phương trình
\(\frac{5x+2\sqrt{3-x}}{4}-1>\frac{x}{4}-\frac{4-3\sqrt{3-x}}{6}\)
\(ĐKXĐ:x\le3\)
\(\Leftrightarrow\frac{5x+2\sqrt{3-x}-x}{4}>\frac{6-4+3\sqrt{3-x}}{6}\Leftrightarrow\frac{6x+3\sqrt{3-x}}{6}-\frac{2+3\sqrt{3-x}}{6}>0\Leftrightarrow3x-1>0\Leftrightarrow x>\frac{1}{3}\)
Vậy \(\frac{1}{3}
1. giải các phương trình :
a) $\frac{\sqrt[2]{2x-3}}{ \sqrt[2]{x-1}}$ = 2
b) x-5 $\sqrt[2]{x-2}$ = -2
2. chứng minh bất đẳng thức :
a) $\frac{a^{2}+3}{ \sqrt[n]{a^{2}+2}}$>2
b) $\sqrt[2]{a}$ + $\sqrt[2]{b}$ $\leq$ $\frac{a}{\sqrt[2]{b}}$ + $\frac{b}{\sqrt[2]{a}}$
với a >0; b>0
2:
a: Sửa đề: \(\dfrac{a^2+3}{\sqrt{a^2+2}}>2\)
\(A=\dfrac{a^2+3}{\sqrt{a^2+2}}=\dfrac{a^2+2+1}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\)
=>\(A>=2\cdot\sqrt{\sqrt{a^2+2}\cdot\dfrac{1}{\sqrt{a^2+2}}}=2\)
A=2 thì a^2+2=1
=>a^2=-1(loại)
=>A>2 với mọi a
b: \(\Leftrightarrow\sqrt{a}+\sqrt{b}< =\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}\)
=>\(a\sqrt{a}+b\sqrt{b}>=a\sqrt{b}+b\sqrt{a}\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)-\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)>=0\)
=>(căn a+căn b)(a-2*căn ab+b)>=0
=>(căn a+căn b)(căn a-căn b)^2>=0(luôn đúng)
1
ĐK: `x>1`
PT trở thành:
\(\sqrt{\dfrac{2x-3}{x-1}}=2\\ \Leftrightarrow\dfrac{2x-3}{x-1}=2^2=4\\ \Leftrightarrow4x-4-2x+3=0\\ \Leftrightarrow2x-1=0\\ \Leftrightarrow x=\dfrac{1}{2}\left(KTM\right)\)
Vậy PT vô nghiệm.
b
ĐK: \(x\ge2\)
Đặt \(t=\sqrt{x-2}\) (\(t\ge0\))
=> \(x=t^2+2\)
PT trở thành: \(t^2+2-5t+2=0\)
\(\Leftrightarrow t^2-5t+4=0\)
nhẩm nghiệm: `a+b+c=0` (`1+(-5)+4=0`)
\(\Rightarrow\left\{{}\begin{matrix}t=1\left(nhận\right)\\t=4\left(nhận\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}=1\\\sqrt{x-2}=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3\left(TM\right)\\x=18\left(TM\right)\end{matrix}\right.\)
Giải bất phương trình :
\(3^{\sqrt{x^2-2x}}\ge\left(\frac{1}{3}\right)^{x-\sqrt{x^2-2x+1}}\)
Điều kiện \(x^2-2x\ge0\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le0\end{array}\right.\) khi đó :
Bất phương trình \(\Leftrightarrow3^{\sqrt{x^2-2x}}\ge\left(3\right)^{\sqrt{\left(x-1\right)^2}-x}\Leftrightarrow\sqrt{x^2-2x}\ge\left|x-1\right|-x\)
- Khi \(x\ge2\Rightarrow x-1>0\) nên bất phương trình \(\sqrt{x^2-2x}\ge-1\) đúng với mọi \(x\ge2\)
- Khi \(x\le0\Rightarrow x-1< 0\) nên bất phương trình \(\sqrt{x^2-2x}\ge1-2x\)
\(\Leftrightarrow\begin{cases}x^2-2x\ge1-4x+4x^2\\x\le0\end{cases}\) vô nghiệm
Vậy tập nghiệm của bất phương trình là : S = [2;\(+\infty\) )
Giải Phương trình sau : \(\sqrt{x}-x\left(x-\frac{1}{2}\right)=\frac{1}{2x^3}-\frac{1}{2x\sqrt{x}}\)
giải hệ phương trình sau :\(\hept{\begin{cases}\sqrt{4x-2y}-2\sqrt{x-2y}=-1\\\sqrt{x-2y}+7\left(2x-y\right)=37\end{cases}}\)
Giải các phương trình, bất pt sau:
\(\sqrt{2.6^x-4^x}+\sqrt[3]{3.12^x-2.8^x}=2.3^x\)
\(\frac{1}{2^{\sqrt{x^2-2x}}}\le2^{x-1}\)
Giải các bất phương trình sau:
a) \(\sqrt{2-|x-2|}>x-2\)
b) \(x^2+3x+2\geq 2\sqrt{x^2+3x+5}\)
c) \(4\sqrt{x}+\frac{2}{\sqrt{x}}<2x+\frac{1}{2x}+2\)