Tìm x, biết: \(\sqrt{4\left(1-x\right)^2}\)-6 =0
Tìm x, biết:
a) \(\dfrac{-3}{2}x+\dfrac{1}{4}=\dfrac{1}{2}\left(x+1\right)\)
b) \(\left(6-3\sqrt{x}\right)\left(\left|x\right|-7\right)=0\)
a: \(-\dfrac{3}{2}x+\dfrac{1}{4}=\dfrac{1}{2}\left(x+1\right)\)
=>\(-\dfrac{3}{2}x+\dfrac{1}{4}=\dfrac{1}{2}x+\dfrac{1}{2}\)
=>\(-\dfrac{3}{2}x-\dfrac{1}{2}x=\dfrac{1}{2}-\dfrac{1}{4}\)
=>\(-2x=\dfrac{1}{4}\)
=>\(2x=-\dfrac{1}{4}\)
=>\(x=-\dfrac{1}{4}:2=-\dfrac{1}{8}\)
b: ĐKXĐ: x>=0
\(\left(6-3\sqrt{x}\right)\left(\left|x\right|-7\right)=0\)
=>\(\left\{{}\begin{matrix}6-3\sqrt{x}=0\\\left|x\right|-7=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3\sqrt{x}=6\\\left|x\right|=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=2\\\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-7\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=4\left(nhận\right)\end{matrix}\right.\)
27. A=\(\left(\dfrac{x-\sqrt{x}+7}{x-4}+\dfrac{1}{\sqrt{x}-2}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{6\sqrt{x}}{x-4}\right)\)
a. rút gọn A
b. Tính A với x thỏa mãn \(\)\(x^2-5x+4=0\)|
c. tìm x khi A=0
d. tìm x để A>5
Phần a,b,c bạn có thể tham khảo bài bên dưới.
Phần d.
ĐKXĐ: $x\geq 0; x\neq 4$
$A>5\Leftrightarrow \frac{x+9}{2\sqrt{x}}>5$ ($x> 0$)
$\Leftrightarrow x+9> 10\sqrt{x}$
$\Leftrightarrow x-10\sqrt{x}+9>0$
$\Leftrightarrow (\sqrt{x}-1)(\sqrt{x}-9)>0$
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} \sqrt{x}-1>0\\ \sqrt{x}-9>0\end{matrix}\right.\\ \left\{\begin{matrix} \sqrt{x}-1<0\\ \sqrt{x}-9<0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x>1\\ x>81\end{matrix}\right.\\ \left\{\begin{matrix} 0\leq x< 1\\ 0\leq x< 81\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} x>81\\ 0\leq x< 1\end{matrix}\right.\)
Kết hợp với đkxđ suy ra $x>81$ hoặc $0< x< 1$
a
Với: x \(\ge0,x\) \(\ne4\) có:
\(A=\left(\dfrac{x-\sqrt{x}+7}{x-4}+\dfrac{\sqrt{x}+2}{x-4}\right):\left(\dfrac{\left(\sqrt{x}+2\right)^2}{x-4}-\dfrac{\left(\sqrt{x}-2\right)^2}{x-4}-\dfrac{6\sqrt{x}}{x-4}\right)\)
\(=\left(\dfrac{x-\sqrt{x}+7+\sqrt{x}+2}{x-4}\right):\left(\dfrac{x+4\sqrt{x}+4}{x-4}-\dfrac{x-4\sqrt{x}+4}{x-4}-\dfrac{6\sqrt{x}}{x-4}\right)\)
\(=\left(\dfrac{x+9}{x-4}\right):\left(\dfrac{x+4\sqrt{x}+4-x+4\sqrt{x}-4-6\sqrt{x}}{x-4}\right)\)
\(=\left(\dfrac{x+9}{x-4}\right):\left(\dfrac{2\sqrt{x}}{x-4}\right)\)
\(=\dfrac{\left(x+9\right)\left(x-4\right)}{2\sqrt{x}\left(x-4\right)}=\dfrac{x+9}{2\sqrt{x}}\)
b
Giải \(x^2-5x+4=0\)
Nhẩm nghiệm: a + b + c = 0 (1 - 5 + 4 = 0)
\(\Rightarrow x_1=1;x_2=\dfrac{c}{a}=\dfrac{4}{1}=4\)
Thay x = 1 vào A:
\(A=\dfrac{1+9}{2\sqrt{1}}=\dfrac{10}{2}=5\)
Thay x = 4 vào A:
\(A=\dfrac{4+9}{2.\sqrt{4}}=\dfrac{13}{2.2}=\dfrac{13}{4}\)
c
ĐK: x > 0
\(A=0\Leftrightarrow\dfrac{x+9}{2\sqrt{x}}=0\)
=> \(x+9=0\Rightarrow x=-9\) (không thỏa mãn)
Vậy không xác định được giá trị x
d
ĐK: x > 0
\(A>5\Leftrightarrow\dfrac{x+9}{2\sqrt{x}}>5\)
\(\Leftrightarrow x+9>5.2\sqrt{x}\Leftrightarrow x+9>10\sqrt{x}\)
\(\Leftrightarrow\left(x+9\right)^2>\left(10\sqrt{x}\right)^2=100x\)
<=> \(x^2+18x+81-100x>0\)
<=> \(x^2-82x+81>0\)
<=> \(x^2-81x-x+81>0\)
<=> \(x\left(x-81\right)-\left(x-81\right)>0\)
<=> \(\left(x-1\right)\left(x-81\right)>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-1>0\\x-81>0\end{matrix}\right.\\\left[{}\begin{matrix}x-1< 0\\x-81< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>1\\x>81\end{matrix}\right.\\\left[{}\begin{matrix}x< 1\\x< 81\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>81\\x< 81\end{matrix}\right.\)
Vậy để A > 5 thì x > 81 và 0 < x < 81
rút gọn
C=\(\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right)\div\dfrac{\sqrt{x}}{x-4}vớix>0,x\ne4\)
D=\(\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x+1}}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}vớix>1,x\ne4,x\ne9\)
lm nhanhgiups mk nhé!Mk đang cần gấp!
c) Ta có: \(C=\left(\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{\sqrt{x}}{x-4}\)
\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}}=2\)
d)
Sửa đề: \(D=\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x}+1}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}\)
Ta có: \(D=\dfrac{8+x\left(1+\sqrt{x-2\sqrt{x}+1}\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{x-3\sqrt{x}}{2\left(x-\sqrt{x}-6\right)}\)
\(=\dfrac{8+x\left(1+\sqrt{x}-1\right)}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x\sqrt{x}+8}{\left(x-4\right)\left(x-2\sqrt{x}+4\right)}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
\(=\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}+4+x-2\sqrt{x}}{2\left(x-4\right)}\)
\(=\dfrac{x+4}{2x-8}\)
Tìm x biết
1) \(\sqrt{x-1}=3\)
2) \(\sqrt{x}-\sqrt{3}=0\)
3) \(4-5\sqrt{x}=-1\)
4) \(\sqrt{x}\left(\sqrt{ }x-1\right)=0\)
5)\(\left(\sqrt{ }x-2\right)\left(\sqrt{ }x+3\right)=0\)
6) \(\left(\sqrt{ }x+1\right)\left(\sqrt{ }x+2\right)=0\)
7) \(^{^{ }}x2+2\sqrt{2x}+2=1\)
Tìm x biết: \(\sqrt{4.\left(x-1\right)^2}-6=0\)
@@ bây giờ mới ngỡ ra
TH1:
2.|x-1| = 6
=> 2.(x-1) = 6
2x-2 = 6
2x = 6+2
x = 8
x = 8:2
x = 4
TH2:
2.|x-1| = 6
=> 2[-(x-1)] = 6
2.[-x+1] = 6
-2x+2 = 6
-2x = 6-2
-2x = 4
x = 4:(-2)
x = -2
=>\(\sqrt{4\left(X-1\right)^2}=6\Rightarrow4\left(X-1\right)^2=36\Rightarrow\left(X-1\right)^2=9\Rightarrow X-1=3\Rightarrow X=4\)
\(C=\left(1-\frac{1}{\sqrt{x}+2}\right):\left(\frac{4-x}{x-\sqrt{x}-6}-\frac{\sqrt{x}-2}{3-\sqrt{x}}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right)\)
a) Tìm x để C>0
b) Tìm x thuộc Z để C thuộc Z
Giải các hệ phương trình sau
\(1)\left\{{}\begin{matrix}\sqrt{x+1}=\sqrt{2}\left(8y^2+8y+1\right)\\4\left(x^3-8y^3\right)-6\left(x^2+4y^2\right)+3\left(x+2y\right)-1=0\end{matrix}\right.\)
\(2)\left\{{}\begin{matrix}3\sqrt{17x^2-y^2-6x+4}+x=6\sqrt{2x^2+x+y}-3y+2\\\sqrt{3x^2+xy+1}=\sqrt{x+1}\end{matrix}\right.\)
\(3)\left\{{}\begin{matrix}x^3+\left(2-y\right)x^2+\left(2-3y\right)x=5\left(x+1\right)\\3\sqrt{y+1}=3x^2-14x+14\end{matrix}\right.\)
\(4)\left\{{}\begin{matrix}4x^2=\left(\sqrt{x^2+1}+1\right)\left(x^2-y^3+3y-2\right)\\x^2+\left(y+1\right)^2=2\left(1+\dfrac{1-x^2}{y}\right)\end{matrix}\right.\)
\(5)\left\{{}\begin{matrix}7x^3+y^3+3xy\left(x-y\right)-12x^2+6x-1=0\\y^2+7y-17=9x+2\left(x+6\right)\sqrt{5-2y}\end{matrix}\right.\)
\(6)\left\{{}\begin{matrix}2x^2+3=4\left(x^2-2yx^2\right)\sqrt{3-2y}+\dfrac{4x^2+1}{x}\\\left(2x+1\right)\sqrt{2-\sqrt{3-2y}}=\sqrt[3]{2x^2+x^3}+x+2\end{matrix}\right.\)
Tìm x, biết
a) \(\sqrt{4\left(x+1\right)}=\sqrt{8}\)
b) \(\sqrt{4\left(x^2-1\right)}-2\sqrt{15}=0\)
\(\sqrt{4\left(x+1\right)}=\sqrt{8}\)
⇒4(x+1)=8
⇒x+1=2
⇒x=1
a. \(\sqrt{4\left(x+1\right)}=\sqrt{8}\) ĐKXĐ: \(x\ge-1\)
<=> \(\left(\sqrt{4\left(x+1\right)}\right)^2=\left(\sqrt{8}\right)^2\)
<=> 4(x + 1) = 8
<=> 4x + 4 = 8
<=> 4x = -4
<=> x = -1 (TM)
Vậy nghiệm của PT là S = \(\left\{-1\right\}\)
Điều kiện: $ - \frac{1}{3} \le x \le 6$
Ta nhẩm thấy x = 5 là nghiệm của PT, thêm bớt và trục căn thức ta có:
Phương trình $ \Leftrightarrow \left( {\sqrt {3x + 1} - 4} \right) - \left( {\sqrt {6 - x} - 1} \right) + \left( {3{x^2} - 14x - 5} \right) = 0$
$ \Leftrightarrow \frac{{3\left( {x - 5} \right)}}{{\sqrt {3x + 1} + 4}} + \frac{{x - 5}}{{\sqrt {6 - x} + 1}} + \left( {3x + 1} \right)\left( {x - 5} \right) = 0$
$ \Leftrightarrow \left( {x - 5} \right)\left[ {\frac{3}{{\sqrt {3x + 1} + 4}} + \frac{1}{{\sqrt {6 - x} + 1}} + \left( {3x + 1} \right)} \right] = 0 \Leftrightarrow \left( {x - 5} \right)g\left( x \right) = 0$
Với điều kiện trên ta thấy g(x) > 0 vậy x = 5 là nghiệm của PT.