Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Luna
Xem chi tiết
ha Le ha
14 tháng 8 2017 lúc 15:20

a, \(A=2+2^2+2^3+....+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{59}+2^{60}\right)\)

\(=2.\left(1+2\right)+2^3.\left(1+2\right)+....+2^{59}.\left(1+2\right)\)

\(=2.3+2^3.3+....+2^{59}.3\)

\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)(đpcm)

Trần Gia Hân
Xem chi tiết
Trịnh Tiến Đức
6 tháng 10 2015 lúc 12:37

A=2+22+23+...+260

= ( 2+22)+(23+24)+...+(259+260)

= 2. 3 + 23.3+...+259.3

= 3.( 2+23+...+259) chia het cho 3

=> A chia het cho 3

Kinomoto Sakura
6 tháng 10 2015 lúc 12:39

A = (2 +22) + (23+24) + ....... + (259 + 260)

   = 2(1+2) + 23(1+2) + ... + 259(1+2)

   = 2. 3 + 23 . 3 + .... + 259 x 3

   = 3(2 + 23 + .... + 259 ) chia hết cho 3

 

Nguyễn Thị Kim Anh
Xem chi tiết
kurosaki ichigo
3 tháng 10 2015 lúc 18:09

A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}

={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}

=2{1+2}+2^3{1+2}+...+2^59{1+2}

=2.3+2^3.3+.....+2^59.3

=3.(2+2^3+...+2^59)

vi co thua so 3 => tich do chia het cho 3

Nguyễn Trọng Phúc
12 tháng 10 2022 lúc 20:40

A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}

={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}

=2{1+2}+2^3{1+2}+...+2^59{1+2}

=2.3+2^3.3+.....+2^59.3

=3.(2+2^3+...+2^59)

vi co thua so 3 => tich do chia het cho 3

Thành Công Lê
Xem chi tiết
Kiều Vũ Linh
24 tháng 10 2023 lúc 21:47

A = 2 + 2² + 2³ + ... + 2⁶⁰

= (2 + 2²) + (2³ + 2⁴) + ... + (2⁵⁹ + 2⁶⁰)

= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)

= 2.3 + 2³.3 + ... + 2⁵⁹.3

= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3

Vậy A ⋮ 3

------

A = 2 + 2² + 2³ + ... + 2⁶⁰

= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁵⁸.(1 + 2 + 2²)

= 2.7 + 2⁴.7 + ... + 2⁵⁸.7

= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7

Vậy A ⋮ 7

--------

A = 2 + 2² + 2³ + ... + 2⁶⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2⁵⁷ + 2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2⁵⁶.(2 + 2² + 2³ + 2⁴)

= 30.(1 + 2⁴ + ... + 2⁵⁶)

= 5.6.(1 + 2⁴ + ... + 2⁵⁶) ⋮ 5

Vậy A ⋮ 5

Võ Ngọc Phương
2 tháng 11 2023 lúc 19:11

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(A=6+2^2.\left(2+2^2\right)+...+2^{58}.\left(2+2^2\right)\)

\(A=6+2^2.6+...+2^{58}.6\)

\(A=6.\left(1+2^2+...+2^{58}\right)\) 

Vì \(6⋮3\) nên \(6.\left(1+2^2+...+2^{58}\right)⋮3\)

Vậy \(A⋮3\)

___________

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(A=14+...+2^{57}.\left(2+2^2+2^3\right)\)

\(A=14+...+2^{57}.14\)

\(A=14.\left(1+...+2^{57}\right)\)

Vì \(14⋮7\) nên \(14.\left(1+...2^{57}\right)⋮7\)

Vậy \(A⋮7\)

____________

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(A=30+...+2^{56}.\left(2+2^2+2^3+2^4\right)\)

\(A=30+...+2^{56}.30\)

\(A=30.\left(1+...+2^{56}\right)\)

Vì \(30⋮5\) nên \(30.\left(1+...+2^{56}\right)⋮5\)

Vậy \(A⋮7\)

\(#WendyDang\)

Nguyễn Phương Uyên
Xem chi tiết
Eternal friendship
15 tháng 12 2017 lúc 16:45

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +2+ 23) + (2+ 2 + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 2+ 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 3+ 37) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 3 + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

     
Ad
14 tháng 10 2018 lúc 8:47

a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)

\(=3\times91+3^7\times91+...+3^{1987}\times91\)

\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)

\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)

Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.

b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)

\(=3\times820+...+3^{1985}\times820\)

\(=3\times20\times41+...+3^{1985}\times20\times41\)

\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)

Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.

Đỗ quyết Tiến
22 tháng 2 lúc 20:01

Đcm

 

Bùi Tuấn Minh
Xem chi tiết
Đoàn Đức Hà
5 tháng 12 2021 lúc 17:32

\(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)\)chia hết cho \(3\).

\(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)\)chia hết cho \(7\).

\(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{57}\right)\)chia hết cho \(15\)

Mà \(\left(15,7\right)=1\)nên \(A\)chia hết cho \(7.15=105\).

Khách vãng lai đã xóa
Nguyễn Gia Phong
7 tháng 12 2022 lúc 20:42

loading...  loading...    

nguyễn ngọc thảo vy
Xem chi tiết
Ori Đặng
Xem chi tiết
tran thanh minh
15 tháng 3 2015 lúc 17:07

chung minh chia het cho 3

 ta co khi dung tinh chat phan phoiVA GHEP CAP  A=2(1+2)+2^3(1+2)+............................................................+2^59(1+2)

                                                   A=2*3+2^3*3+......................................................................+2^59*3

                                                  A=3(2+2^3+......................................+2^59)

                                                  TU DO SUY RA A CHIA HET CHO 3 

CHUNG MINH A CHIA HET CHO 7

TA CO DUNG TINH CHAT PHAN PHOI VA GHEP CAP A=2(1+2+4)+..................................................................+2^58(1+2+4)

A=2*7+...................................................................+2^58*7

A=7(2+...................................+2^58)

TU DO SUY BRA A CHIA HET CHO 7 

CHUNG MINH A CHIA HET CHO 15

DUNG TINH CHAT PHAN PHOI VA GHEP CAP 

A=2(1+2+4+8)+....................................+2^57(1+2+4+8)

A=2*15+............................................+2^57*15

A=15(2+.....................+2^57)

TỪ ĐÓ SUY RA A CHIA HẾT CHỖ 15

CAI DAU LA GHEP DOI ;THU HAI GHEP 3 ;THU 3 GHEP 4

CHO MÌNH THẬT NHIỀU LIKE NHÉ CẢM ƠN

Hoàng Đức Hiếu
20 tháng 10 2016 lúc 18:39

Ôi giời ơi làm dài như thế này thì chết mệt mất

Tồng Đức Trị
Xem chi tiết

\(A=2+2^2+2^3+2^4+...+2^{60}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\\ =\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{58}\left(2+2^2\right)\\ =\left(2+2^2\right).\left(1+2^2+...+2^{58}\right)\\ =6.\left(1+2^2+...+2^{58}\right)⋮3\left(Vì:6⋮3\right)\)

Kiều Vũ Linh
1 tháng 8 2023 lúc 10:21

A = 2 + 2² + 2³ + ... + 2⁵⁹ + 2⁶⁰

= (2 + 2²) + (2³ + 2⁴) + ... + (2⁵⁹ + 2⁶⁰)

= 2(1 + 2) + 2³(1 + 2) + ... + 2⁵⁹(1 + 2)

= 2.3 + 2³.3 + ... + 2⁵⁹.3

= 3(2 + 2³ + ... + 2⁵⁹) ⋮ 3

Nguyễn Hoàng Anh Thư
1 tháng 8 2023 lúc 10:14

Ta có: �=(2+22)+(23+24)+...+(259+260)

=2.(1+2)+23.(1+2)+...+259.(1+2)

=2.3+23.3+...+259.3

=3.(2+23+...+259)chia hết cho 3

=> A chia hết cho 3 (Đpcm).

Phạm Minh phong
Xem chi tiết
tran thanh minh
10 tháng 7 2015 lúc 9:17

A=2(1+2)+2^3(1+2)+...+2^59(1+2)

A=2.3+2^3.3+...+2^59.3

A=3(2+2^3+...+2^59) chia hết cho 3

Vậy a chia hết cho 3

A=2.(1+2+4)+...+2^58(1+2+4)

A=2.7+...+2^58.7

A=7.(2+..+2^58) chia hết cho7

Vậy A chia hết cho 7

A=2(1+2+4+8)+...+2^57(1+2+4+8)

A=2.15+...+2^57.15

A=15.(2+...+2^57) chia hết cho 15 

Vậy A chia hết cho 15 

Vậy A chia hết cho 3,7,15