\(\left|x\right|-2,2=1,3\)
Tìm \(x\in Q\), biết:
a, \(\left|2,5-x\right|=1,3\)
b, \(1,6-\left|x-0,2\right|=0\)
a)\(\left[{}\begin{matrix}\dfrac{5}{2}-x=\dfrac{1}{3}\\\dfrac{5}{2}-x=-\dfrac{1}{3}\end{matrix}\right.\left[{}\begin{matrix}x=\dfrac{13}{6}\\x=\dfrac{17}{6}\end{matrix}\right.\)
b) 8/6-x-1/5=0
9/6-x=1/5
x=13/10
a) \(\left|2,5-x\right|=1,3\)
\(\Leftrightarrow\left[{}\begin{matrix}2,5-x=1,3\\2,5-x=-1,3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1,2\\x=3,8\end{matrix}\right.\)
b) \(1,6-\left|x-0,2\right|=0\)
\(\Leftrightarrow\left|x-0,2\right|=1,6\)
\(\Leftrightarrow\left[{}\begin{matrix}x-0,2=1,6\\x-0,2=-1,6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1,8\\x=-1,4\end{matrix}\right.\)
Bài 1:
a) \(\left(x-1,3\right)^2=9\)
b) \(2^{4-x}=32\)
c) \(\left(x+1,5\right)^2+\left(y-2,5\right)^{10}=0\)
a) \(\left(x-1,3\right)^2=9\Leftrightarrow\left[{}\begin{matrix}x-1,3=3\\x-1,3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4,3\\x=-1,7\end{matrix}\right.\)
b) 24-x = 32
⇔ 24-x = 25
⇔ 4-x=5
⇔ x=-1
c) (x+1,5)2+(y-2,5)10=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+1,5=0\\y-2,5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1,5\\y=2,5\end{matrix}\right.\)
\(a,\left(x-1,3\right)^2=9\\ \Leftrightarrow\left(x-1,3+9\right)\left(x-1,3-9\right)=0\\ \Leftrightarrow\left(x-7,7\right)\left(x-10,3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7,7=\dfrac{77}{10}\\x=10,3=\dfrac{103}{10}\end{matrix}\right.\)
\(b,2^{4-x}=32=2^5\\ \Leftrightarrow4-x=5\\ \Leftrightarrow x=-1\)
\(c,\left(x+1,5\right)^2+\left(y-2,5\right)^{10}=0\\ \Leftrightarrow\left\{{}\begin{matrix}x+1,5=0\\y-2,5=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-1,5=-\dfrac{3}{2}\\y=2,5=\dfrac{5}{2}\end{matrix}\right.\)
a. (x - 1,3)2 = 9
<=> (x - 1,3)2 - 9 = 0
<=> (x - 1,3)2 - 32 = 0
<=> (x - 1,3 - 3)(x - 1,3 + 3) = 0
<=> (x - 4,3)(x + 1,7) = 0
<=> \(\left[{}\begin{matrix}x-4,3=0\\x+1,7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4,3\\x=-1,7\end{matrix}\right.\)
\(\left|x-2,2\right|=\left|0,2+x\right|\) Tìm x
\(\Rightarrow x-2,2=0,2+x \)
\(\Leftrightarrow x\in rổng\)
\(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)
\(Do\left|x+\frac{8}{5}\right|\ge0;\left|2,2-2y\right|\ge0=>\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)
Mà \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0=>\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)
\(=>\hept{\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}=>\hept{\begin{cases}x+\frac{8}{5}=0\\2,2-2y=0\end{cases}=>\hept{\begin{cases}x=-\frac{8}{5}\\2y=2,2\end{cases}=>\hept{\begin{cases}x=-1,6\\y=1,1\end{cases}}}}}\)
Vậy x = -1,6; y = 1,1
Ủng hộ mk nha ^_-
Tìm x biết:
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+\left|x+4\right|=5x-1\)-1
\(\left|x+1,1\right|+\left|x+1,2\right|+\left|x+1,3\right|+\left|x+1,4\right|=5x\)
\(\left|x+1\right|-\left|3x+2\right|=x+2\)
Bài 1: Tìm x biết
a) \(\left|x-\dfrac{1}{3}\right|=2\dfrac{1}{5}\)
b) \(\left|-x+\dfrac{2}{5}\right|+\dfrac{1}{2}=3,5\)
c) \(\left|x+\dfrac{1}{4}\right|-\dfrac{3}{4}=5\%\)
Bài 2: Rút gọn biểu thức sau nếu x < -1,3
A= \(\left|x+1,3\right|-\left|x-2,5\right|\)
B= \(\left|-x-1,3\right|-\left|x-2,5\right|\)
Bài 3: Tìm x biết
a) \(\left|x-1\right|=x-1\)
b) \(\left|x-1\right|=1-x\)
c) \(x-1< \left|x-1\right|\)
d) \(x-1>\left|x-1\right|\)
Hồng Phúc Nguyễn bn hk cx giỏi nhỉ bn giúp mk bài này nha
xin bn đấy!!!
/x/-2,2=1,3
\(\left|x\right|-2,2=1,3\)
\(\left|x\right|=1,3+2,2\)
\(\left|x\right|=3,5\)
Vậy x = 3,5 hoặc x = -3,5
\(\left|x\right|-2,2=1,3\)
\(x=1,3+2,2\)
\(x=3,5\)
hoặc : |x| - 2,2 = 1,3
-x - 2,2 = 1,3
- x= 1,3 + 2,2
-x = 3,5
x = -3,5
Vậy x = 3,5 hoặc x = -3,5
mik nhah nhất đó
/x/-2,2=1,3
/x/=1,3+2,2
/x/=3,5
Vậy x=3,5 hoặc x=-3,5
Tìm x , y thõa mãn :
\(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)
Ta luôn có : \(\left|x+\frac{8}{5}\right|\ge0\) , \(\left|2,2-2y\right|\ge0\)
Suy ra \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)
mà \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)
Do đó : \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)
\(\Rightarrow\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}\) \(\Rightarrow\begin{cases}x=-\frac{8}{5}\\y=\frac{11}{10}\end{cases}\)
Ta có
\(\begin{cases}\left|x+\frac{8}{5}\right|\ge0\\\left|2,3-2y\right|\ge0\end{cases}\)
=> \(\left|x+\frac{8}{5}\right|+\left|2,3-2y\right|\ge0\)
=> \(x,y\in\varnothing\)
Vì : \(\left|x+\frac{8}{5}\right|\ge0;\left|2,2-2y\right|\ge0\)
\(\Rightarrow\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\ge0\)
Mà theo đề bài : \(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)
\(\Rightarrow\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|=0\)
\(\Rightarrow\begin{cases}\left|x+\frac{8}{5}\right|=0\\\left|2,2-2y\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x+\frac{8}{5}=0\\2,2-2y=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{8}{5}\\2y=2,2\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{-8}{5}\\y=1,1\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{-8}{5}\\y=\frac{11}{10}\end{cases}\)
Bài 2 : Rút gọn biểu thức sau :
a ) \(A=\left|x+1,3\right|-\left|x-2,5\right|.\)khi \(x< -1,3\)
b ) \(D=\left|x+3\frac{1}{2}\right|+\left|x\right|-3\frac{1}{2}\)với \(x>0\)
c ) \(A=\left|x-\frac{1}{7}\right|-\left|x+\frac{3}{5}\right|+\frac{4}{5}\)khi \(-\frac{3}{5}< x< \frac{1}{7}\)
ta có:
Thầy làm chi tiết giúp em được ko ạ ?
Tl
a =x-1,3-2,5+x
=-3,8
b,D=x+3 và 1/2+x - 3 và 1/2
=2x
c,A=-x +1/7-x-5/5+4/5=1/7+1/5=12/35
Hok tốt
tìm x,y thoả mãn:\(\left|x+\frac{8}{5}\right|+\left|2,2-2y\right|\le0\)