Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ngọc hân
Xem chi tiết
Nguyễn Huy Tú
18 tháng 7 2021 lúc 15:43

undefinedundefined

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:20

Bài 6:

a) Ta có: \(A=-x^2+6x-11\)

\(=-\left(x^2-6x+11\right)\)

\(=-\left(x-3\right)^2-2\le-2\forall x\)

Dấu '=' xảy ra khi x=3

b) Ta có: \(B=-x^2-8x+5\)

\(=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21\le21\forall x\)

Dấu '=' xảy ra khi x=-4

c) Ta có: \(C=-x^2+4x+1\)

\(=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:21

Bài 7:

a) Ta có: \(x^2-6x+11\)

\(=x^2-6x+9+2\)

\(=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

Hai ne
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 20:13

Bài 1:

a: \(M=x^2-10x+3\)

\(=x^2-10x+25-22\)

\(=\left(x^2-10x+25\right)-22\)

\(=\left(x-5\right)^2-22>=-22\forall x\)

Dấu '=' xảy ra khi x-5=0

=>x=5

b: \(N=x^2-x+2\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi x-1/2=0

=>x=1/2

c: \(P=3x^2-12x\)

\(=3\left(x^2-4x\right)\)

\(=3\left(x^2-4x+4-4\right)\)

\(=3\left(x-2\right)^2-12>=-12\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

Mai Đức Bảo
Xem chi tiết
Hai ne
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 12 2023 lúc 0:19

a: \(M=2x^2-4x+3\)

\(=2x^2-4x+2+1\)

\(=2\left(x^2-2x+1\right)+1\)

\(=2\left(x-1\right)^2+1>=1\forall x\)

Dấu '=' xảy ra khi x-1=0

=>x=1

b: \(N=x^2-4x+5+y^2+2y^2\)

\(=x^2-4x+4+3y^2+1\)

\(=\left(x-2\right)^2+3y^2+1>=1\forall x,y\)

Dấu '=' xảy ra khi x-2=0 và y=0

=>x=2 và y=0

Hi HI Hi
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 12 2021 lúc 22:24

\(C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\\ B=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\\ B_{max}=-2\Leftrightarrow x=3\)

Koro-sensei
22 tháng 12 2021 lúc 22:35

C = 4x - x2 + 3 = - x+ 4x + 3 = -x2 + 2x2 - 4 + 7 = - (x2 -2x2 + 4) + 7

C = - (x - 2)2 +7 \(\le\) 7

Dấu "=" <=> x - 2 = 0 <=> x = 2

Vậy gtln của C = 7 khi x = 2 

B = - x+ 6x - 11 = - x2 + 2x3 - 9 - 2 = - (x2 - 2x3 + 9) - 2

B = - (x - 3)2 - 2 \(\le\) - 2

Dấu "=" <=> x - 3 = 0 <=> x = 3

Vậy gtln của B = -2 khi x = 3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 1 2019 lúc 4:17

tanqr
Xem chi tiết
Lấp La Lấp Lánh
16 tháng 10 2021 lúc 10:23

\(A=x^2-6x+15=\left(x^2-6x+9\right)+6\)

\(=\left(x-3\right)^2+6\ge6\)

\(minA=6\Leftrightarrow x=3\)

Thị Thư Nguyễn
16 tháng 10 2021 lúc 10:23

A=x²-2x3+3²+6

A=(x-3)²+6

Vì (x-3)² luôn > hoặc = 0 với mọi x

=> (x-3)²+6 > hoặc = 6

Vậy GTNN = 6 

Dấu "=" xảy ra khi x-3=0

X=3

OH-YEAH^^
16 tháng 10 2021 lúc 10:24

\(A=x^2-6x+15\)

\(\Rightarrow A=x^2-6x+9+6\)

\(\Rightarrow A=\left(x^2-6x+9\right)+6\)

\(\Rightarrow A=\left(x-3\right)^2+6\)

Ta có: \(\left(x-3\right)^2+6\ge6\) với mọi x

Dấu ''='' xảy ra khi \(x=3\)

Tớ Chưa Bồ
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:38

Bài 3: 

a) Ta có: \(A=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)

d) Ta có: \(D=x^2-2x+2\)

\(=x^2-2x+1+1\)

\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)

Nguyễn Lê Phước Thịnh
9 tháng 7 2021 lúc 0:39

Bài 1: 

a) Ta có: \(A=x^2-2x+5\)

\(=x^2-2x+1+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi x=1

b) Ta có: \(B=x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Nguyên Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2021 lúc 9:36

a) Ta có: \(25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)

b) Ta có: \(9x^2-6x+2\)

\(=9x^2-6x+1+1\)

\(=\left(3x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

c) Ta có: \(-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x-1=0

hay x=1

d) Ta có: \(x^2+12x+39\)

\(=x^2+12x+36+3\)

\(=\left(x+6\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=-6

e) Ta có: \(-x^2-12x\)

\(=-\left(x^2+12x+36-36\right)\)

\(=-\left(x+6\right)^2+36\le36\forall x\)

Dấu '=' xảy ra khi x=-6

f) Ta có: \(4x-x^2+1\)

\(=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

Nguyên Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2021 lúc 9:39

a) Ta có: \(25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)

b) Ta có: \(9x^2-6x+2\)

\(=9x^2-6x+1+1\)

\(=\left(3x-1\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)

c) Ta có: \(-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\le-1\forall x\)

Dấu '=' xảy ra khi x=1

Nguyễn Ngọc Lộc
2 tháng 7 2021 lúc 9:46

( Mình trình bày mẫu câu a các câu khác mình làm tắt lại nhưng tương tự trình bày câu a nha )

a, Ta có : \(25x^2-20x+7=\left(5x\right)^2-2.5x.2+2^2+3\)

\(=\left(5x-2\right)^2+3\)

Thấy : \(\left(5x-2\right)^2\ge0\forall x\in R\)

\(\Rightarrow\left(5x-2\right)^2+3\ge3\forall x\in R\)

Vậy \(Min=3\Leftrightarrow5x-2=0\Leftrightarrow x=\dfrac{2}{5}\)

b, \(=9x^2-2.3x+1+1=\left(3x-1\right)^2+1\ge1\)

Vậy Min = 1 <=> x = 1/3

c, \(=-x^2+2x-1-1=-\left(x^2-2x+1\right)-1=-\left(x-1\right)^2-1\le-1\)

Vậy Max = -1 <=> x = 1

d, \(=x^2+2.x.6+36+3=\left(x+6\right)^2+3\ge3\)

Vậy Min = 3 <=> x = - 6

e, \(=-x^2-2.x.6-36+36=-\left(x+6\right)^2+36\le36\)

Vậy Max = 36 <=> x = -6 .

f, \(=-x^2+4x-4+5=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)

Vậy Max = 5 <=> x = 2