Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Minh Quân
Xem chi tiết
Đỗ Tuệ Lâm
7 tháng 3 2022 lúc 22:27

undefined

Nguyễn Lê Phước Thịnh
7 tháng 3 2022 lúc 22:27

a: Xét tứ giác OEAM có \(\widehat{OEM}=\widehat{OAM}=90^0\)

nên OEAM là tứ giác nội tiếp

b: Xét ΔMAB và ΔMCA có

\(\widehat{MAB}=\widehat{MCA}\)

\(\widehat{AMB}\) chung

Do đó: ΔMAB\(\sim\)ΔMCA

Suy ra: MA/MC=MB/MA

hay \(MA^2=MB\cdot MC\)

Triết
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2022 lúc 21:45

Đề sai rồi bạn

Thuy Linh Nguyen
Xem chi tiết
Nguyễn Thị Kim Quỳnh
Xem chi tiết
Nguyễn Thị Kim Quỳnh
27 tháng 5 2018 lúc 8:02

giúp câu c

Võ Thị hanh
Xem chi tiết
Wolf 2k6 has been cursed
Xem chi tiết
LÊ BẢO HÂN
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 6 2023 lúc 8:44

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA^2=MC*MD=MH*MO

=>MC/MO=MH/MD

=>ΔMCH đồng dạng với ΔMOD

=>góc MCH=góc MOD

=>góc HOD+góc HCD=180 độ

=>HODC nội tiếp

Dương Hải Dương
Xem chi tiết
NguyenBaoKhanh
Xem chi tiết
Akai Haruma
18 tháng 11 2023 lúc 21:17

Lời giải:

Vì $MA,MB$ là tiếp tuyến của $O$ nên $MA\perp OA, MB\perp OB$

$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$

Xét tứ giác $MAOB$ có $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$. Mà 2 góc này đối nhau nên $MAOB$ là tứ giác nội tiếp.

$\Rightarrow M, A,O,B$ cùng thuộc 1 đường tròn (1)

Mặt khác:

Tam giác $ONP$ cân tại $O$ (do $ON=OP=R$) nên trung tuyến $OK$ đồng thời là đường cao.

$\Rightarrow \widehat{MKO}=90^0$

Xét tứ giác $MAKO$ có $\widehat{MAO}=\widehat{MKO}=90^0$. Mà 2 góc này cùng nhìn cạnh $MO$ nên $MAKO$ là tứ giác nội tiếp.

$\Rightarrow M,A,K,O$ cùng thuộc 1 đường tròn (2)

Từ $(1); (2)\Rightarrow M, A, O, K,B$ cùng thuộc 1 đường tròn.