Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Hà Ny

Những câu hỏi liên quan
Mang Phạm
Xem chi tiết
Lê Minh Tran
Xem chi tiết
Trúc Phạm
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 4 2022 lúc 14:40

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\AD\perp CD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\Rightarrow CD\perp SD\) (A đúng)

\(AC\perp BD\) theo tính chất của hình vuông (2 đường chéo vuông góc) (B đúng)

\(SA\perp CD\) theo cmt (C đúng)

Do đó D sai

Thu Trang
Xem chi tiết
Chuu
18 tháng 3 2022 lúc 17:50

4/1 x 13/15

= 52/15

lyn (acc 2)
18 tháng 3 2022 lúc 17:51

52/15

Thu Trang
18 tháng 3 2022 lúc 17:57

mình có câu trl rồi nhé:

4 x 13/15 = 4 x 13/15 = 52/15 nhé!

 

Lâm Đỗ
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2021 lúc 22:45

a: Thay \(x=3+2\sqrt{2}\) vào A, ta được:

\(A=\dfrac{3+2\sqrt{2}-\sqrt{2}-1+2}{\sqrt{2}+1+3}=\dfrac{4+\sqrt{2}}{4+\sqrt{2}}=1\)

Nguyễn Hoàng Minh
22 tháng 10 2021 lúc 22:46

\(b,B=\dfrac{x-4+2\sqrt{x}+6-3\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\\ B=\dfrac{x-\sqrt{x}+2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\\ c,M=B:A=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}+3}{x-\sqrt{x}+2}=\dfrac{\sqrt{x}+1}{x-\sqrt{x}+2}\\ M=\dfrac{x-\sqrt{x}+2-x+2\sqrt{x}-1}{x-\sqrt{x}+2}\\ M=1-\dfrac{x-2\sqrt{x}+1}{x-\sqrt{x}+2}=1-\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\)

Ta có \(\left(\sqrt{x}-1\right)^2\ge0;x-\sqrt{x}+2=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)

Do đó \(\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\ge0\)

\(\Leftrightarrow M=1-\dfrac{\left(\sqrt{x}-1\right)^2}{x-\sqrt{x}+2}\le1-0=1\)

Vậy \(M_{max}=1\Leftrightarrow\sqrt{x}=1\Leftrightarrow x=1\left(tm\right)\)

VĂN VŨ LÊ
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 20:51

3:

a: x+4/7=19/14

=>x=19/14-4/7=19/14-8/14=11/14

b: x*4/15=-3/10

=>x=-3/10:4/15=-3/10*15/4=-45/40=-9/8

c: 23,4-x=1,3

=>x=23,4-1,3=22,1

4:

a: B nằm giữa A và C

b: MA,MB,MC,AC

Trung Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 1 2023 lúc 13:17

\(lim\left(\sqrt[3]{n^3+4}-\sqrt[3]{n^3-1}\right)\)

\(=lim\left(\sqrt[3]{1+\dfrac{4}{n^3}}-\sqrt[3]{1-\dfrac{1}{n^3}}\right)=\sqrt[3]{1}-\sqrt[3]{1}=0\)

Lemon Tea
Xem chi tiết
Phạm Thảo Quỳnh
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 3 2022 lúc 11:54

24.

Đường thẳng có 1 vtcp là \(\overrightarrow{u}=\left(2;-5\right)\)

25.

\(a^2=b^2+c^2-2bc.cosA\)

26.

A là mệnh đề sai, công thức đúng: \(S=\dfrac{1}{2}ab.sinC\)

27.

\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=\sqrt{3^2+4^2-2.3.4.cos60^0}=\sqrt{13}\)

28.

\(\widehat{A}=180^0-\left(35^030'+45^0\right)=99^030'\)

Áp dụng định lý hàm sin:

\(\dfrac{a}{sinA}=\dfrac{b}{sinB}\Rightarrow b=\dfrac{a.sinB}{sinA}=\dfrac{12,5.sin\left(35^030'\right)}{sin\left(99^030'\right)}=7,36\left(m\right)\)

Thảob Đỗ
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 9 2021 lúc 22:18

23.

Ta sẽ tìm điểm \(I\left(a;b;c\right)\) sao cho \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\) (1)

\(\left\{{}\begin{matrix}\overrightarrow{IA}=\left(-2-a;2-b;6-c\right)\\\overrightarrow{IB}=\left(-3-a;1-b;8-c\right)\\\overrightarrow{IC}=\left(-1-a;-b;7-c\right)\\\overrightarrow{ID}=\left(1-a;2-b;3-c\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\left(-5-4a;5-4b;24-4c\right)\)

(1) thỏa mãn khi: \(\left\{{}\begin{matrix}-5-4a=0\\5-4b=0\\24-4c=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{4}\\b=\dfrac{5}{4}\\c=6\end{matrix}\right.\)

\(\Rightarrow I\left(-\dfrac{5}{4};\dfrac{5}{4};6\right)\)

Khi đó:

\(T=MA^2+MB^2+MC^2+MD^2=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IB}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IC}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{ID}\right)^2\)

\(=4MI^2+IA^2+IB^2+IC^2+ID^2+2\overrightarrow{MI}\left(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}\right)\)

\(=4MI^2+IA^2+IB^2+IC^2+ID^2\) (do \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\))

\(IA^2+IB^2+IC^2+ID^2\) cố định nên \(T_{min}\) khi \(MI_{min}\)

\(\Leftrightarrow M\) trùng I

\(\Rightarrow M\left(-\dfrac{5}{4};\dfrac{5}{4};6\right)\Rightarrow x+y+z=-\dfrac{5}{4}+\dfrac{5}{4}+6=6\)

Nguyễn Việt Lâm
17 tháng 9 2021 lúc 22:42

24.

\(a+b=4\Rightarrow b=4-a\)

ABCD là hình chữ nhật \(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow C\left(a;a;0\right)\)

Tương tự ta có: \(C'\left(a;a;b\right)\)

M là trung điểm CC' \(\Rightarrow M\left(a;a;\dfrac{b}{2}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{A'B}=\left(a;0;-b\right)=\left(a;0;a-4\right)\\\overrightarrow{A'D}=\left(0;a;-b\right)=\left(0;a;a-4\right)\\\overrightarrow{A'M}=\left(a;a;-\dfrac{b}{2}\right)=\left(a;a;\dfrac{a-4}{2}\right)\end{matrix}\right.\)

Theo công thức tích có hướng:

\(\left[\overrightarrow{A'B};\overrightarrow{A'D}\right]=\left(-a^2+4a;-a^2+4a;a^2\right)\)

\(\Rightarrow V=\dfrac{1}{6}\left|\left[\overrightarrow{A'B};\overrightarrow{A'D}\right].\overrightarrow{A'M}\right|=\dfrac{1}{6}\left|a\left(-a^2+4a\right)+a\left(-a^2+4a\right)+\dfrac{a^2\left(a-4\right)}{2}\right|\)

\(=\dfrac{1}{4}\left|a^3-4a^2\right|=\dfrac{1}{4}\left(4a^2-a^3\right)\)

Xét hàm \(f\left(a\right)=\dfrac{1}{4}\left(4a^2-a^3\right)\) trên \(\left(0;4\right)\)

\(f'\left(a\right)=\dfrac{1}{4}\left(8a-3a^2\right)=0\Rightarrow\left[{}\begin{matrix}a=0\left(loại\right)\\a=\dfrac{8}{3}\end{matrix}\right.\)

\(\Rightarrow f\left(a\right)_{max}=f\left(\dfrac{8}{3}\right)=\dfrac{64}{27}\)

Nguyễn Việt Lâm
17 tháng 9 2021 lúc 22:43

Hình vẽ bài 24:

undefined