Phân tích đa thức thành nhân tử:
2x3 - x2 - 13x - 6
Giúp e với ạ!!!
phân tích đa thức sau thành nhân tử
e) x4 - 2x3 + x2 f) 27y3 - x3
e, x4 - 2x3 + x2
= x2( x2 - 2x + 1)
= x2 (x - 1)2
e: \(x^4-2x^3+x^2\)
\(=x^2\cdot x^2-x^2\cdot2x+x^2\cdot1\)
\(=x^2\left(x^2-2x+1\right)\)
\(=x^2\left(x-1\right)^2\)
f: \(27y^3-x^3\)
\(=\left(3y\right)^3-x^3\)
\(=\left(3y-x\right)\left(9y^2+3xy+x^2\right)\)
\(e)x^4-2x^4+x^2 =x^2.x^2-2x.x^2+x^2+1 =(x^2)(x^2-2x+1) =x^2(x-1)^2 \)
\(f)27y^3-x^3 =(3y)^3-x^3 =(3y-3)(9y^2+3xy+x^2)\)
phân tích đa thức thành nhân tử :
a) x2 - 6x +5
b) x2 - x - 12
c) x2 + 8x +15
d) 2x2 - 5x -12
e) x2 - 13x + 36
a: \(x^2-6x+5=\left(x-5\right)\left(x-1\right)\)
b: \(x^2-x-12=\left(x-4\right)\left(x+3\right)\)
c: \(x^2+8x+15=\left(x+5\right)\left(x+3\right)\)
d: \(2x^2-5x-12=\left(x-4\right)\left(2x+3\right)\)
e: \(x^2-13x+36=\left(x-9\right)\left(x-4\right)\)
Giúp mình với mình đang cần rất gấp
Bài 1: Phân tích đa thức thành nhân tử bằng PP dùng HĐT
(x + 2)2 - (3x - 1)2
Bài 2: Phân tích đa thức thành nhân tử bằng PP nhóm hạng tử
a) x4 - 2x3 + x2 - 2x
b)
c)
d)
e)
f)
Mình rất rất cảm ơn.
1/(x+2)2 -(3x-1)2=(x+2+3x-1)(x+2-3x+1)=4x(-2x+3)=-8x2+12x
2/(x4+x2)(-2x3-2x)=x2(x2+1)-2x(x2+1)=(x2+1)(x2-2x)
phân tích đa thức thành nhân tử
-2x3+x2+12
8x4+81
\(-2x^3+x^2+12\)
\(=-2x^3+4x^2-3x^2+6x-6x+12\)
\(=-2x^2\left(x-2\right)-3x\left(x-2\right)-6\left(x-2\right)\)
\(=\left(x-2\right)\left(-2x^2-3x-6\right)\)
\(8x^4+81\)
\(=8x^4+2\cdot2\sqrt{2}\cdot x^2\cdot9+81-36\sqrt{2}\cdot x^2\)
\(=\left(2\sqrt{2}x^2+9\right)^2-\left(6\sqrt[4]{2}\cdot x\right)^2\)
\(=\left(2\sqrt{2}\cdot x^2-6\sqrt[4]{2}\cdot x+9\right)\left(2\sqrt{2}\cdot x^2+6\sqrt[4]{2}\cdot x+9\right)\)
phân tích đa thức thành nhân tử
a)x(x-5)+(5-x)2
b) x2-20x+100
c) x2+5x+6
giúp mik với mik đag cần gấp
a) \(=x\left(x-5\right)+\left(x-5\right)^2=\left(x-5\right)\left(x+x-5\right)=\left(x-5\right)\left(2x-5\right)\)
b) \(=x^2-2.x.10+10^2=\left(x-10\right)^2\)
c) \(=x\left(x+3\right)+2\left(x+3\right)=\left(x+3\right)\left(x+2\right)\)
Phân tích đa thức thành nhân tử:
a. x4 + 2x3 + 10x2 - 20x
b. x3 - x2y - xy2 + y3
c. x5 + x3 - x2 - 1
x4+2x3+x2-y2
x3+x2-2x-8
phân tích đa thức thành nhân tử
a/ $=x^2(x^2+2x+1)-y^2\\=[x(x+1)]^2-y^2\\=[x(x+1)-y][x(x+1)+y]\\=(x^2+x-y)(x^2+x+y)$
b/ $=(x^3-8)+(x^2-2x)\\=(x-2)(x^2+2x+4)+x(x-2)\\=(x-2)(x^2+2x+5)$
\(x^4+2x^3+x^2-y^2=x^2\left(x+1\right)^2-y^2\\ =\left[x\left(x+1\right)-y\right]\left[x\left(x+1\right)+y\right]\\ =\left(x^2+x-y\right)\left(x^2+x+y\right)\\ x^3+x^2-2x-8=x^3-2x^2+3x^2-6x+4x-8\\ =\left(x-2\right)\left(x^2+3x-4\right)\)
Phân tích đa thức thành nhân tử:
a) x 2 -3x + 2; b) 4 x 2 - 36x + 56;
c) 2 x 2 + 5x + 2; d)2 x 2 -9x + 7;
e) 4 x 2 - 4x - 9 y 2 + 12y - 3; g) x 4 - 2 x 3 -4 x 2 + 4x-3;
h) x 3 -x +3 x 2 y + 3x y 2 + y 3 -y.
a) (x - 1)(x - 2). b) 4(x - 2)(x - 7).
c) (x + 2)(2x +1). d) (x - l)(2x - 7).
e) (2x + 3y - 3)(2x - 3y +1). g) (x - 3)( x 3 + x 2 - x +1).
h) (x + y)(x + y-l)(x + y + l).
Bài 2 Phân tích đa thức sau thành nhân tử
a. x4 + 2x3 − 4x − 4
b. x2(1 − x2) − 4 − 4x2
c. x2 + y2 − x2y2 + xy − x − y
d* a3 + b3 + c3 − 3abc
a) \(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
a) Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)
d) Ta có: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
Phân tích các đa thức sau thành nhân tử:
a) 3x - 3y + x 2 - y 2 ; b) x 2 -4 x 2 y 2 + y 2 + 2xy
c) x 6 - x 4 + 2 x 3 + 2 x 2 ; d) x 3 - 3x 2 +3x - 1 - y 3 .
a) (x - y)(x + y + 3). b) (x + y - 2xy)(2 + y + 2xy).
c) x 2 (x + l)( x 3 - x 2 + 2). d) (x – 1 - y)[ ( x - 1 ) 2 + ( x - 1 ) y + y 2 ].