:Tính tổng A = (-7) + (- 7)^2 + (- 7)^3 + ....+( -7)^2007 .CMR A chia hết cho 43
Tính tổng :A=(-7)+(-7)2+(-7)3+...+(-7)2006+(-7)2007
CMR A chia hết cho 43
ta có
\(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+..\left(-7\right)^{2007}\)
\(\Rightarrow-7A=\left(-7\right)^2+\left(-7\right)^3+..+\left(-7\right)^{2008}\)
Lấy hiệu hai đẳng thức ta có
\(8A=\left(-7\right)-\left(-7\right)^{2008}\Rightarrow A=-\frac{7+7^{2008}}{8}\)
còn A không chia hết cho 43 nhé
Bài 4:Tính tổng A = (-7) + (- 7)2 + (- 7)3 + ....+( -7)2007 .CMR A chia hết cho 43
Ta có:
\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}\)
\(\Rightarrow A=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+...+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(\Rightarrow A=\left(-7\right).\left[1+\left(-7\right)+\left(-7\right)^2\right]+...+\left(-7\right)^{2005}.\left[1+\left(-7\right)+\left(-7\right)^2\right]\)
\(\Rightarrow A=\left(-7\right).43+...+\left(-7\right)^{2005}.43\)
\(\Rightarrow A=\left[\left(-7\right)+...+\left(-7\right)^{2005}\right].43⋮43\)
\(\Rightarrow A⋮43\)
Vậy \(A⋮43\)
A=(-7)+(-7^2)+...+(-7^2006)+(-7^2007)
(-7).A=(-7^2)+(-7^3)+...(-7^2007)+(-7^2008)
=>A-(-7)A=(-7)-(-7^2008)
=>8A=-7-7^2008=>A=(-7+7^2008)/8
b) A={(-7)+(-7^20)+(-7^3)}+...+{(-7^2005)+(-7^2006)+(-7^2007) (chia thành 2007:3=669 nhóm 3 số)
A=(-7).{1+(-7)+(-7^2)}+...+(-2007^2005).{1+(-7)+(-7^2)}
A=(-7).43+...+(-7^2005).43=43.{(-7)+...+(-7^2005)}chia hết cho 43
Vậy A chia hết cho 43
Tính tổng \(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2007}\)
CMR: A chia hết cho 43
A = 1 . (-7) + (-7) . (-7) + (-7) . \(^{\left(-7\right)^2}\)\(+....+1.\left(-7\right)^{2005}+\left(-7\right).\left(-7\right)^{2005}+\left(-7\right)^2.\left(-7\right)^{2005}\)
\(A=\left(-7\right).\left(1+\left(-7\right)+\left(-7\right)^2\right)+...+\left(-7\right)^{2005}.\left(1+\left(-7\right)+\left(-7\right)^2\right)\)
\(A=\left(-7\right).43+....+\left(-7\right)^{2005}.43\)
\(A=43.\left(\left(-7\right)+.....+\left(-7\right)^{2005}\right)\)chia hết cho 43
Vậy A chia hết cho 43
sao tự nhiên lại có dấu = trong [=7] thế kia
Tính tổng \(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2007}.\)CMR: A chia hết 43
Tính tổng \(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2006}+\left(-7\right)^{2007}\) CMR A chia hết cho 43
\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)
\(\left(-7\right).A=\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2007}+\left(-7\right)^{2008}\)
=> \(A-\left(-7\right)A=\left(-7\right)-\left(-7\right)^{2008}\)
=> \(8A=-7-7^{2008}\) => \(A=-\frac{7+7^{2008}}{8}\)
b) \(A=\left(\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right)+...+\left(\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right)\) ( Chia thành 2007 : 3 = 669 nhóm 3 số)
\(A=\left(-7\right).\left(1+\left(-7\right)+\left(-7\right)^2\right)+...+\left(-7\right)^{2005}.\left(1+\left(-7\right)+\left(-7\right)^2\right)\)
\(A=\left(-7\right).43+...+\left(-7\right)^{2005}.43=43.\left(\left(-7\right)+...+\left(-7\right)^{2005}\right)\)chia hết cho 43
Vậy A chia hết cho 43
A= (- 7) + (-7)^2+ … + (- 7)^2006 + (- 7)^2007
<=> -7A = (-7)^2+ … + (- 7)^2006 + (- 7)^2008
A-(- 7A )= (- 7) + (-7)^2+ … + (- 7)^2006 + (- 7)^2007-{(-7)^2+ … + (- 7)^2006 + (- 7)^2008}
<=> 8A = -7 - (- 7)^2008 = -7 + 7^2008 = 7^2008 - 7
<=> A = (7^2008 - 7)/8 .
Cảm ơn cô Loan cô xn ycầu kb cho e nhá !!!! Ths cô nhìu...
a) Tính tổng: A=(-7)+(-7)2+...+(-7)2006+(-7)2007. CMR: A chia hết cho 43.
b) Chứng minh rằng điều kiện cần và đủ để m2+m.n+n2 chia hết cho 9 là: m, n chia hết cho 3.
\(A=\left(-7\right)+\left(-7\right)^2+......+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)
\(=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+\left[\left(-7\right)^4+\left(-7\right)^5+\left(-7\right)^6\right]+.......\) \(+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(=\left(-7\right)\left[1+\left(-7\right)+\left(-7\right)^2\right]+......+\left(-7\right)^{2005}\left[1+\left(-7\right)+\left(-7\right)^2\right]\)
\(=\left(-7\right).43+\left(-7\right)^3.43+......+\left(-7\right)^{2005}.43\)
\(=43\left[\left(-7\right)+\left(-7\right)^3+.....+\left(-7\right)^{2005}\right]\).
Suy ra A chia hết cho 43.
A=(-7+-7^2+-7^3)+.....+(-7^2005+-7^2006+-7^2007)
A=-7(1+-7+-7^2)+.....+-7^2005(1+-7+-7^2)
A=-7.43+....+-7^2005.43\(⋮\)43\(\Rightarrow\)dpcm
b)\(m^2-2mn+n^2+3mn\)
=\(\left(m-n\right)^2+3mn⋮9\)
=\(3mn⋮3\)
\(\Rightarrow\left(m-n\right)^2⋮3\)
\(\Rightarrow\left(m-n\right)^2⋮9\)
\(\Rightarrow3mn⋮9\)
\(\Rightarrow mn⋮3\)
\(\Rightarrow\)m hoạc n\(\)\(⋮\)3
Giả sử m\(⋮\)3,m-n\(⋮\)
\(\Rightarrow\)n\(⋮3\)
\(\Rightarrow\)dpcm
Tính tổng A=\(\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2007}\) Chứng minh rằng A chia hết cho 43
Ta thấy \(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2007}\)
\(A=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+...+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(A=-7.\left[1+\left(-7\right)+49\right]+\left(-7\right)^4.\left[1+\left(-7\right)+49\right]+...+\left(-7\right)^{2005}.\left[1+\left(-7\right)+49\right]\)
\(A=-7.43+\left(-7\right)^4.43+...+\left(-7\right)^{2005}.43\)
\(A=43\left[\left(-7\right)+\left(-7\right)^4+...+\left(-7\right)^{2005}\right]⋮43\)
Vậy A chia hết cho 43.
tổng A luôn chia hết nha bạn
A= -7+(-7)^2+(-7)^3+...+(-7)^2007.Chứng minh A chia hết cho 43
Ta có : A = -7 + (-7)2 + (-7)3 + ....... + (-7)2007
=> -7A = (-7)2 + (-7)3 + ....... + (-7)2008
=> -7A - A = (-7)2008 - (-7)
=> -8A = (-7)2008 + 7
=> A = .........................
Tính tổng A = \(\left(-7\right)+\left(-7\right)^2\) + \(\left(-7\right)^3\) + ... + \(\left(-700\right)^{2007}\) . Chứng minh rằng A chia hết cho 43
Sửa đề: Tính tổng:
\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}...\)
Giải:
\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}\)
\(\Rightarrow-7A=-7\)\(\left[\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}\right]\)
\(=\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2008}\)
\(\Rightarrow A-\left(-7\right)A=\left(-7\right)-\left(-7\right)^{2008}\)
\(\Rightarrow8A=-7+7^{2008}\Rightarrow A=\dfrac{-7+7^{2008}}{8}\)
Vậy \(A=\dfrac{-7+7^{2008}}{8}\)
_____________________________________
Ta có:
\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}\)
\(=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+...+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(=\left(-7\right).\left[1+\left(-7\right)+\left(-7\right)^2\right]+...+\left(-7\right)^{2005}\left[1+\left(-7\right)+\left(-7\right)^2\right]\)
\(=\left(-7\right).43+...+\left(-7\right)^{2005}.43\)
\(=43.\left[\left(-7\right)+...+\left(-7\right)^{2005}\right]⋮43\) (Đpcm)