Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Thị Xuân Quỳnh
Xem chi tiết
Nguyễn Minh Quang
13 tháng 3 2021 lúc 23:47

ta có 

\(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+..\left(-7\right)^{2007}\)

\(\Rightarrow-7A=\left(-7\right)^2+\left(-7\right)^3+..+\left(-7\right)^{2008}\)

Lấy hiệu hai đẳng thức ta có 

\(8A=\left(-7\right)-\left(-7\right)^{2008}\Rightarrow A=-\frac{7+7^{2008}}{8}\)

còn A không chia hết cho 43 nhé

Khách vãng lai đã xóa
Ngô Nhất Khánh
Xem chi tiết
Nguyễn Huy Tú
26 tháng 12 2016 lúc 19:46

Ta có:

\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}\)

\(\Rightarrow A=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+...+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)

\(\Rightarrow A=\left(-7\right).\left[1+\left(-7\right)+\left(-7\right)^2\right]+...+\left(-7\right)^{2005}.\left[1+\left(-7\right)+\left(-7\right)^2\right]\)

\(\Rightarrow A=\left(-7\right).43+...+\left(-7\right)^{2005}.43\)

\(\Rightarrow A=\left[\left(-7\right)+...+\left(-7\right)^{2005}\right].43⋮43\)

\(\Rightarrow A⋮43\)

Vậy \(A⋮43\)

Nguyệt Trâm Anh
26 tháng 12 2016 lúc 20:24

A=(-7)+(-7^2)+...+(-7^2006)+(-7^2007)

(-7).A=(-7^2)+(-7^3)+...(-7^2007)+(-7^2008)

=>A-(-7)A=(-7)-(-7^2008)

=>8A=-7-7^2008=>A=(-7+7^2008)/8

b) A={(-7)+(-7^20)+(-7^3)}+...+{(-7^2005)+(-7^2006)+(-7^2007) (chia thành 2007:3=669 nhóm 3 số)

A=(-7).{1+(-7)+(-7^2)}+...+(-2007^2005).{1+(-7)+(-7^2)}

A=(-7).43+...+(-7^2005).43=43.{(-7)+...+(-7^2005)}chia hết cho 43

Vậy A chia hết cho 43

Ann Ann
Xem chi tiết
tien le
14 tháng 12 2016 lúc 22:13

A = 1 . (-7) + (-7) . (-7) + (-7) . \(^{\left(-7\right)^2}\)\(+....+1.\left(-7\right)^{2005}+\left(-7\right).\left(-7\right)^{2005}+\left(-7\right)^2.\left(-7\right)^{2005}\)

\(A=\left(-7\right).\left(1+\left(-7\right)+\left(-7\right)^2\right)+...+\left(-7\right)^{2005}.\left(1+\left(-7\right)+\left(-7\right)^2\right)\)

\(A=\left(-7\right).43+....+\left(-7\right)^{2005}.43\)

\(A=43.\left(\left(-7\right)+.....+\left(-7\right)^{2005}\right)\)chia hết cho 43

Vậy A chia hết cho 43

thyuggggfytu678
14 tháng 12 2016 lúc 22:03

sao tự nhiên lại có dấu = trong [=7] thế kia

yuki asuna
6 tháng 2 2018 lúc 12:53

Khó thế!

Nguyễn Thu Thủy
Xem chi tiết
Bui Cam Lan Bui
Xem chi tiết
Trần Thị Loan
28 tháng 9 2015 lúc 22:09

\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)

\(\left(-7\right).A=\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2007}+\left(-7\right)^{2008}\)

=> \(A-\left(-7\right)A=\left(-7\right)-\left(-7\right)^{2008}\)

=> \(8A=-7-7^{2008}\) => \(A=-\frac{7+7^{2008}}{8}\)

b) \(A=\left(\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right)+...+\left(\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right)\) ( Chia thành 2007 : 3 = 669 nhóm 3 số)

 \(A=\left(-7\right).\left(1+\left(-7\right)+\left(-7\right)^2\right)+...+\left(-7\right)^{2005}.\left(1+\left(-7\right)+\left(-7\right)^2\right)\)

\(A=\left(-7\right).43+...+\left(-7\right)^{2005}.43=43.\left(\left(-7\right)+...+\left(-7\right)^{2005}\right)\)chia hết cho 43

Vậy A chia hết cho 43

Đinh Tuấn Việt
28 tháng 9 2015 lúc 22:01

A= (- 7) + (-7)^2+ … + (- 7)^2006 + (- 7)^2007 

<=> -7A = (-7)^2+ … + (- 7)^2006 + (- 7)^2008 

A-(- 7A )= (- 7) + (-7)^2+ … + (- 7)^2006 + (- 7)^2007-{(-7)^2+ … + (- 7)^2006 + (- 7)^2008} 

<=> 8A = -7 - (- 7)^2008 = -7 + 7^2008 = 7^2008 - 7 

<=> A = (7^2008 - 7)/8 .

Đỗ Thị Hương Giang
27 tháng 1 2017 lúc 19:50

Cảm ơn cô Loan cô xn ycầu kb cho e nhá !!!! Ths cô nhìu...

Nguyễn Thị Chi
Xem chi tiết
Bùi Thị Vân
22 tháng 12 2017 lúc 10:07

\(A=\left(-7\right)+\left(-7\right)^2+......+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)
\(=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+\left[\left(-7\right)^4+\left(-7\right)^5+\left(-7\right)^6\right]+.......\) \(+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(=\left(-7\right)\left[1+\left(-7\right)+\left(-7\right)^2\right]+......+\left(-7\right)^{2005}\left[1+\left(-7\right)+\left(-7\right)^2\right]\)
\(=\left(-7\right).43+\left(-7\right)^3.43+......+\left(-7\right)^{2005}.43\)
\(=43\left[\left(-7\right)+\left(-7\right)^3+.....+\left(-7\right)^{2005}\right]\).
Suy ra A chia hết cho 43.


Nguyễn Huy Hưng
22 tháng 12 2017 lúc 10:27

A=(-7+-7^2+-7^3)+.....+(-7^2005+-7^2006+-7^2007)

A=-7(1+-7+-7^2)+.....+-7^2005(1+-7+-7^2)

A=-7.43+....+-7^2005.43\(⋮\)43\(\Rightarrow\)dpcm

Nguyễn Huy Hưng
22 tháng 12 2017 lúc 10:33

b)\(m^2-2mn+n^2+3mn\)

=\(\left(m-n\right)^2+3mn⋮9\)

=\(3mn⋮3\)

\(\Rightarrow\left(m-n\right)^2⋮3\)

\(\Rightarrow\left(m-n\right)^2⋮9\)

\(\Rightarrow3mn⋮9\)

\(\Rightarrow mn⋮3\)

\(\Rightarrow\)m hoạc n\(\)\(⋮\)3

Giả sử m\(⋮\)3,m-n\(⋮\)

\(\Rightarrow\)n\(⋮3\)

\(\Rightarrow\)dpcm

Na Na
Xem chi tiết
Cô Hoàng Huyền
8 tháng 12 2017 lúc 9:49

Ta thấy \(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2007}\)

\(A=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+...+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)

\(A=-7.\left[1+\left(-7\right)+49\right]+\left(-7\right)^4.\left[1+\left(-7\right)+49\right]+...+\left(-7\right)^{2005}.\left[1+\left(-7\right)+49\right]\)

\(A=-7.43+\left(-7\right)^4.43+...+\left(-7\right)^{2005}.43\)

\(A=43\left[\left(-7\right)+\left(-7\right)^4+...+\left(-7\right)^{2005}\right]⋮43\)

Vậy A chia hết cho 43.

Nguyễn Đức Bảo
5 tháng 4 2020 lúc 8:11

tổng A luôn chia hết nha bạn

Khách vãng lai đã xóa
Khánh Trúc
Xem chi tiết
Vũ Thị Hương Giang
15 tháng 12 2016 lúc 18:22

Ta có : A = -7 + (-7)2 + (-7)3 + ....... + (-7)2007 

=> -7A = (-7)2 + (-7)3 + ....... + (-7)2008 

=> -7A - A = (-7)2008 - (-7)

=> -8A = (-7)2008 + 7

=> A = .........................

Friend
Xem chi tiết
Hoang Hung Quan
4 tháng 6 2017 lúc 11:18

Sửa đề: Tính tổng:

\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}...\)

Giải:

\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}\)

\(\Rightarrow-7A=-7\)\(\left[\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}\right]\)

\(=\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2008}\)

\(\Rightarrow A-\left(-7\right)A=\left(-7\right)-\left(-7\right)^{2008}\)

\(\Rightarrow8A=-7+7^{2008}\Rightarrow A=\dfrac{-7+7^{2008}}{8}\)

Vậy \(A=\dfrac{-7+7^{2008}}{8}\)

_____________________________________

Ta có:

\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}\)

\(=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+...+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)

\(=\left(-7\right).\left[1+\left(-7\right)+\left(-7\right)^2\right]+...+\left(-7\right)^{2005}\left[1+\left(-7\right)+\left(-7\right)^2\right]\)

\(=\left(-7\right).43+...+\left(-7\right)^{2005}.43\)

\(=43.\left[\left(-7\right)+...+\left(-7\right)^{2005}\right]⋮43\) (Đpcm)

Lightning Farron
25 tháng 12 2016 lúc 18:42

đề sai con cuối