Sửa đề: Tính tổng:
\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}...\)
Giải:
\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}\)
\(\Rightarrow-7A=-7\)\(\left[\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}\right]\)
\(=\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2008}\)
\(\Rightarrow A-\left(-7\right)A=\left(-7\right)-\left(-7\right)^{2008}\)
\(\Rightarrow8A=-7+7^{2008}\Rightarrow A=\dfrac{-7+7^{2008}}{8}\)
Vậy \(A=\dfrac{-7+7^{2008}}{8}\)
_____________________________________
Ta có:
\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}\)
\(=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+...+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(=\left(-7\right).\left[1+\left(-7\right)+\left(-7\right)^2\right]+...+\left(-7\right)^{2005}\left[1+\left(-7\right)+\left(-7\right)^2\right]\)
\(=\left(-7\right).43+...+\left(-7\right)^{2005}.43\)
\(=43.\left[\left(-7\right)+...+\left(-7\right)^{2005}\right]⋮43\) (Đpcm)