1.2+2.3+3.4..................+99+100
1.2+2.3+3.4+.....+99+100
số các chữ số ở đây nó dư nhiều
(100-1,2) / 1,1=89,81818182
tổng các chữ số là
(100+1,2)*89,81818182 / 2=4544,8
tinh tong S = 1.2 + 2.3 + 3.4 + ...............+ 99. 100
Tính dãy số có quy luật
G = 1.2 + 2.3 + 3.4 + ... + 99 . 100
\(G=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(=1\left(1+1\right)+2\left(1+2\right)+3\left(1+3\right)+...+99\left(1+99\right)\)
\(=\left(1^2+2^2+3^3+...+99^2\right)+\left(1+2+3+...+99\right)\)
\(=\dfrac{99\left(99+1\right)\left(2\cdot99+1\right)}{6}+\dfrac{99\cdot100}{2}\)
=328350+4950
=333300
1/1.2+1/2.3+1/3.4+...+1/x(x+1)=99/100
1- 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +......+ 1/x - 1/x+1 = 99/100
1- 1/x+1= 99/100
1/x+1= 1- 99/100
1/x+1=1/100
=> x+1 = 100
x= 100-1
x=99
4/1.2 + 4/ 2.3+ 4/ 3.4+..... +4/ 99 nhân 100
4/1.2 + 4/2.3 +4/3.4+...+4/99.100
=> 4/1 - 4/2 + 4/2 - 4/3 + 4/3 - 4/4+...+ 4/99 - 4/100
=>4 - 4/100
\(\frac{4}{1.2}+\frac{2}{2.3}+\frac{4}{3.4}+...+\frac{4}{99.100}\)
\(=4.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(=4.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=4.\left(1-\frac{1}{100}\right)\)
\(=4.\frac{99}{100}=\frac{99}{25}\)
Tính tổng S= 1.2+2.3+3.4+...+99+100 ta được kết quả S = ........?
3S = 1.2.3 + 2.3.3 + 1.4.3 + ... + 99.100.3
= 1.2.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 3.4.2 + .. + 99.100.101 - 99.100.98
=> 99.100.101 => S = 99.100.101/3 = 999900
Vậy: S = 999900
c) Đặt \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(\Leftrightarrow3A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(\Leftrightarrow3\cdot A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+...+98\cdot99\cdot100-98\cdot99\cdot100+99\cdot100\cdot101\)
\(\Leftrightarrow3\cdot A=99\cdot100\cdot101\)
\(\Leftrightarrow A=33\cdot100\cdot101=333300\)
b) Ta có: \(1+2-3-4+...+97+98-99-100\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=-4\cdot25=-100\)
a)1.2+2.3+3.4+...+19.20
b)9+99+999+...+999...9(100 so 9)
c)999...9x222...2(100 so 9 va 100 so 2)
SOS!!!
a) \(1.2+2.3+3.4+...+19.20\)
\(=\dfrac{20.\left(20+1\right).\left(20+2\right)}{3}\)
\(=3080\)
b) \(9+99+999+...+999...9\left(100so9\right)\)
\(\)\(=\left(10-1\right)+\left(100-1\right)+\left(1000-1\right)+...+\left(1000...0-1\right)\left(99so0\right)\)
\(=\left(10+10^2+10^3+...10^{99}\right)+\left(-1\right).100\)
\(=\left(1+10+10^2+10^3+...10^{99}\right)+\left(-1\right).101\)
\(=\dfrac{10^{99+1}-1}{99-1}-101\)
\(=\dfrac{10^{100}-1}{98}-101\)
\(=\dfrac{10^{100}-9899}{98}\)
c) \(999.9x222...2\) (100 số 9; 100 số 2)
\(9x2=18\)
\(99x22=2178\)
\(999x222=\text{221778}\)
\(9999x2222=22217778\)
\(99999x22222=2222177778\)
\(.........\)
Theo quy luật trên ta có 100 số 9 nhân 100 số 2:
\(999.9x222...2=222...21777...78\) (99 sô 2; 1 số 1; 99 số 7; 1 số 8)
A, 1.2 + 2. 3 + 3. 4 + ....+ 19 . 20
⇒\(\dfrac{20.\left(20+1\right).\left(20+2\right)}{3}\)
⇒3080
vậy kết quả câu a, là 3080
A=9/1.2+ 9/2.3+ 9/3.4+ .... +9/98.99 + 9/99/100
Tính giá trị biểu thức
A=9/1.2+ 9/2.3+ 9/3.4+ .... +9/98.99 + 9/99/100
=9(1- 1/2 + 1/2 -1/3+...+1/99 -1/100)
=9.(1- 1/100)
=9.99/100
=891/100
A=9/1.2+9/2.3+...+9/99.100
A/9=1/1.2+1/2.3+....+1/99.100
A/9=1-1/2+1/2-1/3+....+1/99-1/100
A/9=1+(-1/2+1/2)+(-1/3+1/3)+....+(-1/99+1/99)-1/100
A/9=1-1/100
A/9=99/100
A=99/100.9=891/100
Vậy A=891/100
mik ko biết đúng hay sai mn góp ý giúp mik nha
\(A=\frac{9}{1\cdot2}+\frac{9}{2\cdot3}+\frac{9}{3\cdot4}+...+\frac{9}{98\cdot99}+\frac{9}{99\cdot100}\)
\(\Rightarrow A=9\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\right)\)
\(\Rightarrow A=9\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow A=9\left(1-\frac{1}{100}\right)=9\cdot\frac{99}{100}=\frac{891}{100}\)
HK TỐT #