Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Đức Mạnh
Xem chi tiết
Phạm Thị Thùy Linh
7 tháng 4 2019 lúc 16:39

\(P_{min}\Leftrightarrow\frac{x^2}{x-1}\)nhỏ nhất 

\(\Rightarrow x^2\)nhỏ nhất \(\Rightarrow x=0\)

\(\Rightarrow P=0\)

Cũng lớp 8 nè <3

Bui Huyen
7 tháng 4 2019 lúc 20:40

\(P=\frac{x^2-1+1}{x-1}=x+1+\frac{1}{x-1}=x-1+\frac{1}{x-1}+2\)

Áp dụng Cô si ,ta có:

\(x-1+\frac{1}{x-1}\ge2\)

\(\Rightarrow x-1+\frac{1}{x-1}+2\ge2+2=4\)

Min P=4 khi x=2

Toru
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 11 2023 lúc 22:15

a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)

b: \(A=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}+\dfrac{1}{x-1}+\dfrac{2-x^2}{x^2-x}\right)\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{\left(x+1\right)\left(x-1\right)+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x^2-1+x+2-x^2}\)

\(=\dfrac{x^2\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2}{x-1}\)

c: \(A=\dfrac{x^2}{x-1}=\dfrac{x^2-1+1}{x-1}=x+1+\dfrac{1}{x-1}\)

=>\(A=x-1+\dfrac{1}{x-1}+2>=2\cdot\sqrt{\left(x-1\right)\cdot\dfrac{1}{x-1}}+2=2+2=4\)

Dấu '=' xảy ra khi (x-1)2=1

=>x-1=1 hoặc x-1=-1

=>x=0(loại) hoặc x=2(nhận)

Vậy: \(A_{min}=4\) khi x=2

lindd
Xem chi tiết
random guy
Xem chi tiết
Phạm Phương Linh
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 16:35

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

Akai Haruma
30 tháng 7 2021 lúc 16:36

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Akai Haruma
30 tháng 7 2021 lúc 16:41

3.

Đặt $x+3=a; 7-x=b$ thì $a+b=10$ 

$C=a^4+b^4$

Áp dụng BĐT Bunhiacopxky:

$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$

$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$

$\Rightarrow a^2+b^2\geq 50$

$\Rightarrow C\geq \frac{50^2}{2}=1250$

Vậy $C_{\min}=1250$

Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$

 

 

Adu vip
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 7 2021 lúc 14:24

1) Ta có: P=4

nên \(x-2\sqrt{x}+22=4\sqrt{x}+12\)

\(\Leftrightarrow x-6\sqrt{x}+10=0\)(Vô lý)

3) Thay \(x=3-2\sqrt{2}\) vào P, ta được:

\(P=\dfrac{3-2\sqrt{2}-2\left(\sqrt{2}-1\right)+22}{\sqrt{2}-1+3}\)

\(=\dfrac{3-2\sqrt{2}-2\sqrt{2}+2+22}{2+\sqrt{2}}\)

\(=\dfrac{27-4\sqrt{2}}{2+\sqrt{2}}\)

\(=\dfrac{\left(27-4\sqrt{2}\right)\left(\sqrt{2}-1\right)}{\sqrt{2}}\)

\(=\dfrac{\left(27\sqrt{2}-8\right)\left(\sqrt{2}-1\right)}{2}\)

\(=\dfrac{54-27\sqrt{2}-8\sqrt{2}+8}{2}\)

\(=\dfrac{64-35\sqrt{2}}{2}\)

Xem chi tiết
Trần Thị Hồng
25 tháng 8 2018 lúc 20:57

 =x-1+1/(x-1)+1>=2căn((x-1)(1/(x-1))+1=3 
giá trị nhỏ nhất x+1/(x-1) là 3 (bđt Cô si) 
khi x=2

Pain zEd kAmi
25 tháng 8 2018 lúc 21:05

Áp dụng BĐT cosi ta có:

\(x-1>0;\frac{1}{x-1}>0\)

\(\Rightarrow x-1+\frac{1}{x-1}\ge2\sqrt{\left(x-1\right)\frac{1}{x-1}}\)

\(\Rightarrow x-1+\frac{1}{x-1}\ge2\Rightarrow x+\frac{1}{x-1}\ge3\)

Vậy f(x) đạt GTNN là 3 khi x = 2

ĐINH NHẬT BẢO NHI
Xem chi tiết
Phạm Huy Hoàng
Xem chi tiết
cao van duc
24 tháng 10 2018 lúc 17:40

do x>1 => \(\sqrt{x}-1>0\)ap dung bdt co si:\(\frac{\sqrt{x}-1}{2}+\frac{1}{\sqrt{x}-1}>=\sqrt{2}\)

=>\(\frac{\sqrt{x}}{2}+\frac{1}{\sqrt{x}-1}>=\sqrt{2}-\frac{1}{2}\)

dau bang xay ra khi \(\frac{\sqrt{x}-1}{2}=\frac{1}{\sqrt{x}-1}\)(tu tim x)

=>Bmin=\(\sqrt{2}-\frac{1}{2}\)