Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
THI QUYNH HOA BUI
Xem chi tiết
Trần Tuấn Hoàng
9 tháng 3 2022 lúc 21:52

-Vì \(n+1,n+13\) là các số chính phương nên đặt \(n+1=a^2,n+13=b^2\)

\(\Rightarrow b^2-a^2=n+13-\left(n+1\right)=12\)

\(\Rightarrow\left(b-a\right)\left(b+a\right)=12=\left[{}\begin{matrix}1.12\\2.6\\3.4\end{matrix}\right.\)

-Vì \(b-a< b+a\)

\(\Rightarrow\left[{}\begin{matrix}b-a=1;b+a=12\\b-a=2;b+a=6\\b-a=3;b+a=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}b=\dfrac{13}{2};a=\dfrac{11}{2}\left(loại\right)\\b=4;a=2\left(nhận\right)\\b=\dfrac{7}{2};a=\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

-Vậy \(n=3\) thì n+1 và n+12 đều là các số chính phương.

 

Thắng Phạm
Xem chi tiết
THI QUYNH HOA BUI
Xem chi tiết
Trần Tuấn Hoàng
9 tháng 3 2022 lúc 22:17

-Vì 4n+5, 9n+7 đều là các số chính phương nên đặt \(4n+5=a^2;9n+7=b^2\)

\(\Rightarrow9\left(4n+5\right)=9a^2;4\left(9n+7\right)=4b^2\)

\(\Rightarrow36n+45=9a^2;36n+28=4b^2\)

\(\Rightarrow9a^2-4b^2=36n+45-\left(36n+28\right)=17\)

\(\Rightarrow\left(3a-2b\right)\left(3a+2b\right)=1.17\)

-Vì \(3a-2b< 3a+2b\)

\(\Rightarrow\left[{}\begin{matrix}3a-2b=1\\3a+2b=17\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=3\\b=4\end{matrix}\right.\)

-Vậy \(n=1\) thì 4n+5 và 9n+7 là các số chính phương.

Quân Đặng
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết
Nguyễn Linh Chi
24 tháng 11 2017 lúc 16:20

giúp mk vs mk kick cho nhieu ma

Nguyễn Phương An
24 tháng 11 2017 lúc 17:49

Mik rất muốn giúp bạn nhưng bài này thật sự rất khí, rất rất khó luôn. Từ khi biết đc câu hỏi này của bạn là mik hỏi đông hỏi tây, hỏi thầy cô, bạn bè nhưng kết quả lại là.............. ai cũng chịu

Thế nha! Sorry bạn nhìu lắm. Mik là bạn của bn mà lại ko giúp bạn đc

Nguyễn Linh Chi
Xem chi tiết
♥ Pé Su ♥
Xem chi tiết
KO tên
1 tháng 3 2021 lúc 20:02

1) n+ 4 = (n+ 4n+ 4) - 4n= (n+ 2)- (2n)= (n2 + 2 + 2n).(n+ 2 - 2n)

Ta có n + 2n + 2 = (n+1)+ 1 > 1 với n là số tự nhiên 

n- 2n + 2 = (n -1)2  + 1  1 với n là số tự nhiên

Để  n4 + 4 là số nguyên tố =>  thì  n4 + 4 chỉ có 2 ước là chính nó và 1 

=> n + 2n + 2  = n4 + 4 và n- 2n + 2 = (n -1)2  + 1  = 1 

(n -1)2  + 1  = 1 => n - 1= 0 => n = 1

Vậy n = 1 thì nlà số nguyên tố

_Jun(준)_
1 tháng 3 2021 lúc 20:08

undefined

undefined

THI QUYNH HOA BUI
Xem chi tiết
ILoveMath
10 tháng 12 2021 lúc 21:18

Giả sử \(A=n^2+4n+11\) là số chính phương

đặt \(n^2+4n+11=k^2>0\)

      \(\Rightarrow\left(n^2+4n+4\right)+7=k^2\\ \Rightarrow\left(n+2\right)^2-k^2=-7\\ \Rightarrow\left(n-k+2\right)\left(n+k+2\right)=-7\)

Ta có n,k>0⇒n+k+2>0; n-k+2<n+k+2; n-k+2,n+k+2∈Ư(-7)

Ta có bảng:

n-k+2-1-7
n+k+271
n1-5(loại)
k44

Vậy n=1

 

Nguyễn Thị Mỹ Quỳnh
Xem chi tiết