Tìm giá trị nhỏ nhất:
C=\(\left(x-1\right).\left(x-3\right).\left(x^2-4x+5\right)\)
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
Tìm giá trị nhỏ nhất của\(\frac{\left(4x^5+2x^4+4x^3-x-1\right)}{\left(2x^3+x-1\right)}\)
Tìm các giá trị x để \(\dfrac{\left(x+1\right)\left(x-3\right)}{4x}\)có giá trị là số nguyên nhỏ hơn 1
x=1 nha còn cách làm thì ko bt .-.
\(\dfrac{\left(x+1\right)\left(x-3\right)}{4x}\)=\(\dfrac{x^2-2x-3}{4x}\)=\(\dfrac{x^2-2x+1-3}{4x}=\dfrac{\left(x-1\right)^2}{4x}-\dfrac{4}{4x}\)=\(\dfrac{\left(x-1\right)^2}{4x}-\dfrac{1}{x}\)
giờ thì thay x=1 vào thì ta đc:
\(\dfrac{\left(1-1\right)^2}{4.1}-\dfrac{1}{1}\)=0-1=-1
\(A=\left|4x-\frac{7}{3}\right|+2004\)
\(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\)
\(C=\left|x\right|+\left|x-1\right|+\left|x-2\right|+....+\left|x+99\right|\)
a,Ta có:
\(\left|4x-\frac{7}{3}\right|\ge0\Rightarrow\left|4x-\frac{7}{3}\right|+2004\ge2004\)
Dấu "=" xảy ra \(\Leftrightarrow\left|4x-\frac{7}{3}\right|=0\Leftrightarrow4x-\frac{7}{3}=0\Leftrightarrow4x=\frac{7}{3}\Leftrightarrow x=\frac{7}{12}\)
b,Ta có:
\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|+\left|4-x\right|\ge x-1+x-2+3-x+4-x=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\4-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le4\end{cases}\)\(\Leftrightarrow2\le x\le3\)
Câu C sai đề
A=\(\left|4x-\frac{7}{3}\right|+2004\ge2004\)
Dấu "=" xảy ra khi: x=7/12
Vậy GTNN của A là 2004 tại x=7/12
tìm giá trị nhỏ nhất của
A=\(\sqrt{\left(x+2\right)^2}+\sqrt{\left(x+3\right)^2}=5\)
B=\(\sqrt[]{x+2\sqrt{x-1}+\sqrt{x-2\sqrt{x-1}}}\)
C=\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x+\sqrt{4x-1}}\)
1.
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|x+2|+|x+3|=|x+2|+|-x-3|\geq |x+2-x-3|=1$
Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $(x+2)(-x-3)\geq 0$
$\Leftrightarrow (x+2)(x+3)\leq 0$
$\Leftrightarrow -3\leq x\leq -2$
2. ĐKXĐ: $x\geq 1$
\(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\sqrt{(x-1)+2\sqrt{x-1}+1}+\sqrt{(x-1)-2\sqrt{x-1}+1}\)
\(=\sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|\)
\(=|\sqrt{x-1}+1|+|1-\sqrt{x-1}|\geq |\sqrt{x-1}+1+1-\sqrt{x-1}|=2\)
Vậy gtnn của $B$ là $2$. Giá trị này đạt tại $(\sqrt{x-1}+1)(1-\sqrt{x-1})\geq 0$
$\Leftrightarrow 1-\sqrt{x-1}\geq 0$
$\Leftrightarrow 0\leq x\leq 2$
3.
$C\sqrt{2}=\sqrt{4x+2\sqrt{4x-1}}+\sqrt{4x+2\sqrt{4x-1}}$
$=2\sqrt{(4x-1)+2\sqrt{4x-1}+1}=2\sqrt{(\sqrt{4x-1}+1)^2}$
$=2|\sqrt{4x-1}+1|$
Vì $\sqrt{4x-1}\geq 0$ nên $|\sqrt{4x-1}+1|\geq 1$
$\Rightarrow C\sqrt{2}\geq 2$
$\Rightarrow C\geq \sqrt{2}$
Vậy $C_{\min}=\sqrt{2}$. Giá trị này đạt tại $x=\frac{1}{4}$
Tìm giá trị nhỏ nhất của thương
\(\left(4x^5+2x^4+4x^3-x-1\right):\left(2x^3+x-1\right)\)
Theo mk nghĩ thì đề bài fải như thế này:
\(\left(4x^5+2x^4+4x^3-x^2-1\right):\left(2x^3+x-1\right)\)
Kết quả của phép chia trên là: \(2x^2+x+1\)
Ta có: \(2x^2+x+1=2\left(x^2+\frac{1}{2}x+\frac{1}{2}\right)\)
\(=2\left(x^2+\frac{1}{2}x+\frac{1}{16}+\frac{7}{16}\right)\)
\(=2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\forall x\)
=> Min = 7/8 tại \(2\left(x+\frac{1}{4}\right)^2=0\Rightarrow x=-\frac{1}{4}\)
=.= hok tốt!!
Tìm giá trị nhỏ nhất của các biểu thức :
C = \(4x^2+3+4x\)
G= \(\left(x-4\right)\left(x-5\right)\left(x-6\right)\left(x-7\right)\)
\(C=4x^2+3+4x\)
\(C=\left[\left(2x\right)^2+2.2x+1\right]+2\)
\(C=\left(2x+1\right)^2+2\)
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+1\right)^2+2\ge2\forall x\)
\(C=2\Leftrightarrow\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy \(C=2\Leftrightarrow x=-\frac{1}{2}\)
Chứng minh giá trị của x ko phụ thuộc vào giá trị của biến\(D=\left(5x2\right)^2-\left(6x+1\right)^2+11\left(x-2\right)\left(x+2\right)-16\left(3-2x\right).\)
\(E=4x\left(x-3\right)-\left(x-5\right)^2-3\left(x+1\right)^2+\left(2x+2\right)^2-\left(4x-5\right)\)
\(V=\left(x^2-3\right)^3+9x^2\left(x^3-3\right)-\left(x^2-3\right)\left(x^4+3x^2+9\right)-20.\)
Tìm giá trị nhỏ nhất của biểu thức:
\(T=\left|x-1\right|+\left|x+2\right|+\left|x-3\right|+\left|x+4\right|+\left|x-5\right|+\left|x+6\right|+\left|x-7\right|+\left|x+8\right|+\left|x-9\right|\)
Vì | x-1| ; |x+2|; |x-3| ; |x+4| ; |x-5|; |x+6| ; |x-7| ; |x+8| ; |x-9| luôn luôn < hoặc = 0
vì vậy min của T =0
\(T=|x-1|+|x+2|+|x-3|+|x+4|+|x-5|+|x+6|+|x-7|+|x+8|+|x-9|\)
\(\Rightarrow T=|x-1|+|x+2|+|3-x|+|x+4|+|5-x|+|x+6|+|7-x|+|x+8|+|9-x|\)
\(\Rightarrow T\ge|x-1+x+2+3-x+x+4+5-x+x+6+7-x+x+8+9-x|\)
\(\Rightarrow T\ge|43|\)
\(\Rightarrow T\ge43\)
Vậy \(Min_T=43\)
Aaaaa! Nãy tui bị ngu vậy mới đúng nè hay sao ý @@
\(T=|x-1|+|x+2|+|x-3|+|x+4|+|x-5|+|x+6|+|x-7|+|x+8|+|x-9| \)
\(\Rightarrow\)\( T=|1-x|+|x+2|+|3-x|+|x+4|+|5-x|+|x+6|+|7-x|+|x+8|+|9-x| \)
\(T\ge\)\( |1-x +x+2+3-x+x+4+5-x+x+6+7-x+x+8+9-x| \)
\(\Rightarrow T\ge|44-x|\)
Vậy GTNN của x = 44 khi x = 0