Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Bình
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 10 2023 lúc 21:44

a: Gọi E là trung điểm của OA

=>E là tâm đường tròn đường kính OA

Xét (E) có

ΔOBA nội tiếp

OA là đường kính

Do đó: ΔOBA vuông tại B

=>AB vuông góc OB tại B

=>AB là tiếp tuyến của (O)

Xét (O) có

ΔOCA nội tiếp

OA là đường kính

Do đó: ΔOCA vuông tại C

=>AC vuông góc với CO tại C

=>AC là tiếp tuyến của (O)

b: Xét (O) có

ΔBCK nội tiếp

BK là đường kính

Do đó: ΔBCK vuông tại C

=>BC vuông góc CK tại C

Xét (E) có

ΔBCI nội tiếp

BI là đường kính

Do đó: ΔBCI vuông tại C

=>BC vuông góc CI tại C

\(\widehat{KCI}=\widehat{KCB}+\widehat{ICB}\)

\(=90^0+90^0\)

\(=180^0\)

=>K,C,I thẳng hàng

Xét (B;BC) có

BC là bán kính

KI vuông góc với BC tại C

Do đó: KI là tiếp tuyến của (B;BC)

Hoàng Anh Tú
6 tháng 11 lúc 20:47

Hình 

 

nguyenzitt2403
Xem chi tiết
Phạm Thư
Xem chi tiết
An Thy
29 tháng 5 2021 lúc 12:12

a) Vì TO là đường kính \(\Rightarrow\angle TMO=90\) mà \(M\in\left(O\right)\Rightarrow TM\) là tiếp tuyến của (O)

b) Xét \(\Delta TMC\) và \(\Delta TDM:\) Ta có: \(\left\{{}\begin{matrix}\angle MTDchung\\\angle TMC=\angle TDM\end{matrix}\right.\)

\(\Rightarrow\Delta TMD\sim\Delta TCM\left(g-g\right)\Rightarrow\dfrac{TC}{TM}=\dfrac{TM}{TD}\Rightarrow TC.TD=TM^2\)

c) Vì đường tròn đường kính TO có tâm I và đường tròn (O) cắt nhau tại M và N \(\Rightarrow\) IO là trung trực của MN \(\Rightarrow MN\bot TO\)

mà \(\Delta TMO\) vuông tại M \(\Rightarrow TM^2=TE.TO\) (hệ thức lượng)

mà \(TC.TD=TM^2\Rightarrow TC.TD=TE.TO\Rightarrow\dfrac{TC}{TE}=\dfrac{TO}{TD}\)

Xét \(\Delta TEC\) và \(\Delta TDO:\) Ta có: \(\left\{{}\begin{matrix}\angle OTDchung\\\dfrac{TC}{TE}=\dfrac{TO}{TD}\end{matrix}\right.\)

\(\Rightarrow\Delta TEC\sim\Delta TDO\left(c-g-c\right)\Rightarrow\angle TEC=\angle TDO\Rightarrow ODCE\) nội tiếp

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 11 2018 lúc 14:24

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác DEK vuông tại K có KH là trung tuyến thuộc cạnh huyền DE nên: HK = HE = (1/2).DE (tính chất tam giác vuông)

Suy ra tam giác EHK cân tại H

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 2 2017 lúc 6:52

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Xét tam giác DEK vuông tại K có KH là trung tuyến nên KH = HE

ΔKHE có KH = HE ⇒ ΔKHE cân tại H

⇒ ∠(HKE ) = ∠(KEH)

Lại có ΔO'CK cân tại O' ⇒ ∠(O'CK) = (O'KC)

⇒ ∠(HKE ) + ∠(O'KC) = ∠(KEH) + ∠(O'CK)

⇔ ∠(O'KH) = ∠(KEH) + ∠(O'CK)

Mặt khác ∠(O'CK) = ∠(HCE) (đối đỉnh)

ΔHEC vuông tại H nên ∠(KEH) + ∠(HCE) = 90o ⇒ ∠(KEH) + ∠(O'CK) = 90 0

Hay ∠(O'KH) =  90 0

⇒ KH là tiếp tuyến của (O')

Chiến Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2023 lúc 8:45

a: ΔOAB cân tại O

mà OC là đường cao

nên OC là phân giác của góc AOB

Xét ΔOAC và ΔOBC có

OA=OB

góc AOC=góc BOC

OC chung

Do đó: ΔOAC=ΔOBC

=>góc OBC=90 độ

=>CB là tiếp tuyến của (O)

b: Xét (O) có

ΔBAD nôi tiếp

BD là đường kính

Do đó:ΔBAD vuông tại A

=>AD vuông góc với BA

=>AD//CB

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 5 2018 lúc 18:00

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Gọi H là giao điểm của OC và AB, ΔAOB cân tại O (OA = OB, bán kính). OH là đường cao nên cũng là đường phân giác. Do đó:

Để học tốt Toán 9 | Giải bài tập Toán 9

Để học tốt Toán 9 | Giải bài tập Toán 9

Suy ra: CB vuông góc với OB, mà OB là bán kính của đường tròn (O)

⇒ CB là tiếp tuến của đường tròn (O) tại B. (điều phải chứng minh)

b) Ta có: OH vuông góc AB nên H là trung điểm của AB (quan hệ vuông góc giữa đường kính và dây)

Để học tốt Toán 9 | Giải bài tập Toán 9

Vậy OC = 25 cm

Nguyễn Thùy Chi
Xem chi tiết
Trần Minh Anh
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết
Nhật Nam
22 tháng 8 2021 lúc 16:37

a) Ta thấy OC là trung trực của AB nên ΔOAC = ΔOBC (c.c.c), duy ra góc OBC vuông. Do đó CB là tiếp tuyến của đường tròn.

b) AI = AB : 2 = 12 cm.

Tính được OI = 9 cm.

OC=OA2:OI=152:9=25 cm.

Khách vãng lai đã xóa
Phương Vy
22 tháng 8 2021 lúc 20:44

a) Ta thấy OC là trung trực của AB nên ΔOAC = ΔOBC (c.c.c), duy ra góc OBC vuông. Do đó CB là tiếp tuyến của đường tròn.

b) AI = AB : 2 = 12 cm.

Tính được OI = 9 cm.

OC = OA^2 : OI = 15^2 : 9 = 25 cm.

Khách vãng lai đã xóa
Trần Văn Mừng
18 tháng 11 2021 lúc 20:58

a) Ta thấy OC là trung trực của AB nên ΔOAC = ΔOBC (c.c.c), duy ra góc OBC vuông. Do đó CB là tiếp tuyến của đường tròn.

b) AI = AB : 2 = 12 cm.

Tính được OI = 9 cm.

OC=OA2:OI=152:9=25 cm.

Khách vãng lai đã xóa