Tìm x biết : x(x-2017)-2018x+2017.2018 = 0
Tính P (2017) biết rằng:
P (x)=x^2017- 2018x^2016+2018x^2015-2018x^2014+...-2018x^2+2018x-1
GIÚP MÌNH VỚI!!!!PLEASE!!!!😖😖😖
P(x)= x^2017 - 2018x^2016+ 2018x^2015+...-2018x^2 + 2018x-1
=> P(x)= x^2017 -2017x^2016-x^2016 + 2017x^2015 + x^2015+..-2017x^2-x^2 + 2017x+x-1
=> P(x)= x^2016(x-2017) -x^2015(x-2017)+...- x(x -2017)+ x-1
thay x=2017 vào p(x) ta được
p(2017)= 2016
Cho x = 2017. Tính giá trị của đa thức
\(P\left(x\right)=x^{2017}-2018x^{2017}+2018x^{2016}-2018x^{2015}+...+2018x^2-2018x+1\)
\(P\left(x\right)=x^{2017}-2018x^{2017}+2018x^{2016}-...-2018x+1\)
Vì \(x=2017\)
\(\Leftrightarrow x+1=2018\)
Thay vào P(x) ta được :
\(P\left(x\right)=x^{2017}-x^{2017}\left(x+1\right)+x^{2016}\left(x+1\right)-...-x\left(x+1\right)+1\)
\(P\left(x\right)=x^{2017}-x^{2018}-x^{2017}+x^{2017}+x^{2016}-...-x^2-x+1\)
\(P\left(x\right)=-x^{2018}+1\)
\(P\left(x\right)=-2017^{2018}+1\)
Tính các giá trị biểu thức sau:
a) \(A=x^5-2018x^4+2018x^3-2018x^2+2018x-2019\) biết x=2017
b) \(B=2x^5+5y^3+4\) tại x,y thỏa mãn \(\left(x+1\right)^{20}+\left(y+2\right)^{30}=0\)
a)\(A=x^5-2018x^4+2018x^3-2018x^2+2018x-2019\)
\(A=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-2019\)
\(A=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2019\)
\(A=x-2019=2017-2019=-2\)
b)ta có:\(\left(x+1\right)^{20}+\left(y+2\right)^{30}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
Thay vào \(\Rightarrow B=2\cdot\left(-1\right)^5+5\cdot\left(-2\right)^3+4\)
\(B=-2+\left(-40\right)+4=-38\)
thục hiền đc đó thục hiền ak nay vẫn hoc24 bình thường à
Ta có x=2017 => 2018 = x+1 ; 2019= x+2
thay vào ta có : \(A=x^5-\left(x+1\right).x^4+\left(x+1\right).x^3-\left(x+1\right).x^2+\left(x+1\right).x-\left(x+2\right)\) \(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^x+x-x-2\) \(=\left(x^5-x^5\right)+\left(-x^4+x^4^{ }\right)+\left(x^3-x^3\right)+\left(-x^2+x^2\right)+\left(x-x\right)-2\)=-2
ey học tốt nhá
tinh p=x\(^{15}\)-2018x\(^{14}\)+2018x\(^{13}\)-2018x\(^{12}\)+...+2018x\(^3\)-2018x\(^2\)+2018x-2018 ;voi x=2017
Ta có: x=2017
nên x+1=2018
Ta có: \(P=x^{15}-2018x^{14}+2018x^{13}-2018x^{12}+...+2018x^3-2018x^2+2018x-2018\)
\(=x^{15}-\left(x+1\right)\cdot x^{14}+\left(x+1\right)\cdot x^{13}-\left(x+1\right)\cdot x^{12}+...+\left(x+1\right)\cdot x^3-\left(x+1\right)\cdot x^2+\left(x+1\right)\cdot x-\left(x+1\right)\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}+...+x^3-x^3+x^2-x^2+x-x-1\)
=-1
tính đi đã thức hay đơn thức ý các bạn hộ mình với ạ!!!mơn@@
F=x^11-2018x^10-2018x^9-2018x^8-2018x^7-...-2018x-2017 với x=2105 ( hình như x=2017 hay sao ý ạ)
Tìm x biết
2018x - 1 + 2019x( 1 - 2018x) = 0
Đề:............
<=> - (1 - 2018x) + 2019x.(1 - 2018x) = 0
<=> (1 - 2018x).[(-1) + 2019x] = 0
Xét 2 trường hợp, ta có:
TH1: 1 - 2018x = 0 TH2: -1 + 2019x = 0
<=> 2018x = 1 <=> 2019x = 1
<=> x = 1/2018 <=> x = 1/2019
Vậy x = 1/2018; 1/2019
Tìm x biết
c, 2018x - 1 + 2019x( 1-2018x )=0
\(2018x-1+2019x\left(1-2018x\right)=0\)
\(-\left(1-2018x\right)+2019x\left(1-2018x\right)=0\)
\(\left(1-2018x\right)\left(-1+2019x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}1-2018x=0\\-1+2019x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2018}\\x=\frac{1}{2019}\end{cases}}}\)
F(x)=x7-2018x6+2018x5-2018x4+2018x3-2018x2+2018x+1 Với x=2017
F(x)=\(x^7-2018x^6+2018x^5-2018x^4+2018x^3-2018x^2+2018x+1.\)
x=2017=>2018=x+1 thay vào F(x) ta có:
F(x)=x+1=2018
Tính \(A=x^5-2018x^4+2018x^3-2018x^2+2018x-1000\) tại x=2017
Lời giải:
Ta có:
\(A=x^5-2018x^4+2018x^3-2018x^2+2018x-1000\)
\(A=(x^5-2017x^4)-(x^4-2017x^3)+(x^3-2017x^2)-(x^2-2017x)+x-1000\)
\(A=x^4(x-2017)-x^3(x-2017)+x^2(x-2017)-x(x-2017)+x-1000\)
Tại \(x=2017\Rightarrow A=2017^4.0-2017^3.0+2017^2.0-2017.0+2017-1000\)
\(A=2017-1000=1017\)