Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
allain top
Xem chi tiết
Trần Thị Ngọc Duyên
25 tháng 5 2022 lúc 19:53

Tham khảo

+ Nếu P(x) có bậc lớn hơn hoặc bằng 4 => P(8) ≥ 84 = 4096 > 1995  => P(x) có bậc bé hơn hoặc bằng 3
+Nếu P(x) có bậc 2 hoặc 1 => P(8) ≤ 8.82 + 8.8 + 8 = 584 < 1995 => P(x) có bậc lớn hơn hoặc bằng 3

Từ 2 điều trên => P(x) có bậc 3
P(x)=ax3+bx2+cx+d=ax3+g(x) với g(x)=bx2+cx+dP(x)=ax3+bx2+cx+d=ax3+g(x) với g(x)=bx2+cx+d
Ta có:0≤G(8)≤8.82+8.8+8=5840≤G(8)≤8.82+8.8+8=584

1995=P(8)=a.83+G(8)≤a.83+5841995=P(8)=a.83+G(8)≤a.83+584

a.83+584≥1995⇒a≥1995−58483≈2,75⇒a≥3a.83+584≥1995⇒a≥1995−58483≈2,75⇒a≥3

Mặt khác nếu a ≥ 4 thì P(8)≥4.83=2048>1995P(8)≥4.83=2048>1995 => loại => a < 4

a ≥ 3 mà a < 4 => a = 3 

P(x)=3x3+bx2+cx+dP(x)=3x3+bx2+cx+d

1995=P(8)=3.83+G(8)⇒G(8)=4951995=P(8)=3.83+G(8)⇒G(8)=495

Ta tiếp tục đánh giá tương tự như trên với b, c, d (b ≥ n và b < n+1 => b = n)

495=G(8)=b.82+c.8+d≤a.82+8.8+8⇒b≥6,6⇒b≥7495=G(8)=b.82+c.8+d≤a.82+8.8+8⇒b≥6,6⇒b≥7

Nếu b = 8 thì G(8)≥8.82=512>495G(8)≥8.82=512>495 => vô lí => b < 8

Từ 2 điều trên suy ra b = 7.

P(x)=3x3+7x2+cx+dP(x)=3x3+7x2+cx+d

1995=P(8)=3.83+7.82+8c+d⇒8c+d=111995=P(8)=3.83+7.82+8c+d⇒8c+d=11

Nếu c ≥ 2 thì 8c+d≥8.2=16>118c+d≥8.2=16>11 => vô lí => c > 2 => c = 1 hoặc c = 0

+c = 1 thì 8.1+d=11⇒d=38.1+d=11⇒d=3
Đa thức P(x)=3x3+7x2+x+3P(x)=3x3+7x2+x+3
+c = 0 thì 8.0 + d =11 => d = 11 > 8 (loại)

Kết luận: P(x)=3x3+7x2+x+3

+ Nếu P(x) có bậc lớn hơn hoặc bằng 4 => P(8) ≥ 84 = 4096 > 1995  => P(x) có bậc bé hơn hoặc bằng 3
+Nếu P(x) có bậc 2 hoặc 1 => P(8) ≤ 8.82 + 8.8 + 8 = 584 < 1995 => P(x) có bậc lớn hơn hoặc bằng 3

Từ 2 điều trên => P(x) có bậc 3
P(x)=ax3+bx2+cx+d=ax3+g(x) với g(x)=bx2+cx+dP(x)=ax3+bx2+cx+d=ax3+g(x) với g(x)=bx2+cx+d
Ta có:0≤G(8)≤8.82+8.8+8=5840≤G(8)≤8.82+8.8+8=584

1995=P(8)=a.83+G(8)≤a.83+5841995=P(8)=a.83+G(8)≤a.83+584

a.83+584≥1995⇒a≥1995−58483≈2,75⇒a≥3a.83+584≥1995⇒a≥1995−58483≈2,75⇒a≥3

Mặt khác nếu a ≥ 4 thì P(8)≥4.83=2048>1995P(8)≥4.83=2048>1995 => loại => a < 4

a ≥ 3 mà a < 4 => a = 3 

P(x)=3x3+bx2+cx+dP(x)=3x3+bx2+cx+d

1995=P(8)=3.83+G(8)⇒G(8)=4951995=P(8)=3.83+G(8)⇒G(8)=495

Ta tiếp tục đánh giá tương tự như trên với b, c, d (b ≥ n và b < n+1 => b = n)

495=G(8)=b.82+c.8+d≤a.82+8.8+8⇒b≥6,6⇒b≥7495=G(8)=b.82+c.8+d≤a.82+8.8+8⇒b≥6,6⇒b≥7

Nếu b = 8 thì G(8)≥8.82=512>495G(8)≥8.82=512>495 => vô lí => b < 8

Từ 2 điều trên suy ra b = 7.

P(x)=3x3+7x2+cx+dP(x)=3x3+7x2+cx+d

1995=P(8)=3.83+7.82+8c+d⇒8c+d=111995=P(8)=3.83+7.82+8c+d⇒8c+d=11

Nếu c ≥ 2 thì 8c+d≥8.2=16>118c+d≥8.2=16>11 => vô lí => c > 2 => c = 1 hoặc c = 0

+c = 1 thì 8.1+d=11⇒d=38.1+d=11⇒d=3
Đa thức P(x)=3x3+7x2+x+3P(x)=3x3+7x2+x+3
+c = 0 thì 8.0 + d =11 => d = 11 > 8 (loại)

Kết luận: P(x)=3x3+7x2+x+3

Trần Thị Ngọc Duyên
25 tháng 5 2022 lúc 19:53

+ Nếu P(x) có bậc lớn hơn hoặc bằng 4 => P(8) ≥ 84 = 4096 > 1995  => P(x) có bậc bé hơn hoặc bằng 3
+Nếu P(x) có bậc 2 hoặc 1 => P(8) ≤ 8.82 + 8.8 + 8 = 584 < 1995 => P(x) có bậc lớn hơn hoặc bằng 3

Từ 2 điều trên => P(x) có bậc 3
P(x)=ax3+bx2+cx+d=ax3+g(x) với g(x)=bx2+cx+dP(x)=ax3+bx2+cx+d=ax3+g(x) với g(x)=bx2+cx+d
Ta có:0≤G(8)≤8.82+8.8+8=5840≤G(8)≤8.82+8.8+8=584

1995=P(8)=a.83+G(8)≤a.83+5841995=P(8)=a.83+G(8)≤a.83+584

a.83+584≥1995⇒a≥1995−58483≈2,75⇒a≥3a.83+584≥1995⇒a≥1995−58483≈2,75⇒a≥3

Mặt khác nếu a ≥ 4 thì P(8)≥4.83=2048>1995P(8)≥4.83=2048>1995 => loại => a < 4

a ≥ 3 mà a < 4 => a = 3 

P(x)=3x3+bx2+cx+dP(x)=3x3+bx2+cx+d

1995=P(8)=3.83+G(8)⇒G(8)=4951995=P(8)=3.83+G(8)⇒G(8)=495

Ta tiếp tục đánh giá tương tự như trên với b, c, d (b ≥ n và b < n+1 => b = n)

495=G(8)=b.82+c.8+d≤a.82+8.8+8⇒b≥6,6⇒b≥7495=G(8)=b.82+c.8+d≤a.82+8.8+8⇒b≥6,6⇒b≥7

Nếu b = 8 thì G(8)≥8.82=512>495G(8)≥8.82=512>495 => vô lí => b < 8

Từ 2 điều trên suy ra b = 7.

P(x)=3x3+7x2+cx+dP(x)=3x3+7x2+cx+d

1995=P(8)=3.83+7.82+8c+d⇒8c+d=111995=P(8)=3.83+7.82+8c+d⇒8c+d=11

Nếu c ≥ 2 thì 8c+d≥8.2=16>118c+d≥8.2=16>11 => vô lí => c > 2 => c = 1 hoặc c = 0

+c = 1 thì 8.1+d=11⇒d=38.1+d=11⇒d=3
Đa thức P(x)=3x3+7x2+x+3P(x)=3x3+7x2+x+3
+c = 0 thì 8.0 + d =11 => d = 11 > 8 (loại)

Kết luận: P(x)=3x3+7x2+x+3

+ Nếu P(x) có bậc lớn hơn hoặc bằng 4 => P(8) ≥ 84 = 4096 > 1995  => P(x) có bậc bé hơn hoặc bằng 3
+Nếu P(x) có bậc 2 hoặc 1 => P(8) ≤ 8.82 + 8.8 + 8 = 584 < 1995 => P(x) có bậc lớn hơn hoặc bằng 3

Từ 2 điều trên => P(x) có bậc 3
P(x)=ax3+bx2+cx+d=ax3+g(x) với g(x)=bx2+cx+dP(x)=ax3+bx2+cx+d=ax3+g(x) với g(x)=bx2+cx+d
Ta có:0≤G(8)≤8.82+8.8+8=5840≤G(8)≤8.82+8.8+8=584

1995=P(8)=a.83+G(8)≤a.83+5841995=P(8)=a.83+G(8)≤a.83+584

a.83+584≥1995⇒a≥1995−58483≈2,75⇒a≥3a.83+584≥1995⇒a≥1995−58483≈2,75⇒a≥3

Mặt khác nếu a ≥ 4 thì P(8)≥4.83=2048>1995P(8)≥4.83=2048>1995 => loại => a < 4

a ≥ 3 mà a < 4 => a = 3 

P(x)=3x3+bx2+cx+dP(x)=3x3+bx2+cx+d

1995=P(8)=3.83+G(8)⇒G(8)=4951995=P(8)=3.83+G(8)⇒G(8)=495

Ta tiếp tục đánh giá tương tự như trên với b, c, d (b ≥ n và b < n+1 => b = n)

495=G(8)=b.82+c.8+d≤a.82+8.8+8⇒b≥6,6⇒b≥7495=G(8)=b.82+c.8+d≤a.82+8.8+8⇒b≥6,6⇒b≥7

Nếu b = 8 thì G(8)≥8.82=512>495G(8)≥8.82=512>495 => vô lí => b < 8

Từ 2 điều trên suy ra b = 7.

P(x)=3x3+7x2+cx+dP(x)=3x3+7x2+cx+d

1995=P(8)=3.83+7.82+8c+d⇒8c+d=111995=P(8)=3.83+7.82+8c+d⇒8c+d=11

Nếu c ≥ 2 thì 8c+d≥8.2=16>118c+d≥8.2=16>11 => vô lí => c > 2 => c = 1 hoặc c = 0

+c = 1 thì 8.1+d=11⇒d=38.1+d=11⇒d=3
Đa thức P(x)=3x3+7x2+x+3P(x)=3x3+7x2+x+3
+c = 0 thì 8.0 + d =11 => d = 11 > 8 (loại)

Kết luận: P(x)=3x3+7x2+x+3

allain top
Xem chi tiết
Quynh Anh Quach
Xem chi tiết
Mr Lazy
2 tháng 7 2015 lúc 12:13

+ Nếu P(x) có bậc lớn hơn hoặc bằng 4 => P(8) ≥ 84 = 4096 > 1995  => P(x) có bậc bé hơn hoặc bằng 3
+Nếu P(x) có bậc 2 hoặc 1 => P(8) ≤ 8.82 + 8.8 + 8 = 584 < 1995 => P(x) có bậc lớn hơn hoặc bằng 3

Từ 2 điều trên => P(x) có bậc 3
\(P\left(x\right)=ax^3+bx^2+cx+d=ax^3+g\left(x\right)\text{ với }g\left(x\right)=bx^2+cx+d\)
Ta có:\(0\le G\left(8\right)\le8.8^2+8.8+8=584\)

\(1995=P\left(8\right)=a.8^3+G\left(8\right)\le a.8^3+584\)

\(a.8^3+584\ge1995\Rightarrow a\ge\frac{1995-584}{8^3}\approx2,75\Rightarrow a\ge3\)

Mặt khác nếu a ≥ 4 thì \(P\left(8\right)\ge4.8^3=2048>1995\) => loại => a < 4

a ≥ 3 mà a < 4 => a = 3 

\(P\left(x\right)=3x^3+bx^2+cx+d\)

\(1995=P\left(8\right)=3.8^3+G\left(8\right)\Rightarrow G\left(8\right)=495\)

Ta tiếp tục đánh giá tương tự như trên với b, c, d (b ≥ n và b < n+1 => b = n)

\(\)\(495=G\left(8\right)=b.8^2+c.8+d\le a.8^2+8.8+8\Rightarrow b\ge6,6\Rightarrow b\ge7\)

Nếu b = 8 thì \(G\left(8\right)\ge8.8^2=512>495\) => vô lí => b < 8

Từ 2 điều trên suy ra b = 7.

\(P\left(x\right)=3x^3+7x^2+cx+d\)

\(1995=P\left(8\right)=3.8^3+7.8^2+8c+d\Rightarrow8c+d=11\)

Nếu c ≥ 2 thì \(8c+d\ge8.2=16>11\) => vô lí => c > 2 => c = 1 hoặc c = 0

+c = 1 thì \(8.1+d=11\Rightarrow d=3\)
Đa thức \(P\left(x\right)=3x^3+7x^2+x+3\)
+c = 0 thì 8.0 + d =11 => d = 11 > 8 (loại)

Kết luận: \(P\left(x\right)=3x^3+7x^2+x+3\)

Thử lại thấy đúng

 

allain top
Xem chi tiết
Ngu Người
Xem chi tiết
Lê Hồng Ngọc
Xem chi tiết
Mai Thanh Hải
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 4 2017 lúc 15:17

✓ ℍɠŞ_ŦƦùM $₦G ✓
Xem chi tiết
Lê Chí Cường
29 tháng 6 2015 lúc 20:51

P(x)=0

=>P(3)=0

=>P((3))=0

KAl(SO4)2·12H2O
17 tháng 3 2018 lúc 22:31

Với x = 0, ta có (0) = Q(0) + Q(1).            (/)

Với x = 1, ta có (1) = Q(1) + Q(0).            (**)

Từ (*) và (**) ta có: P(0) = P(1)

Giả sử P(x) = anx2 + an - 1xn - 1 + ... + a1x1 + ao (a1 là các số nguyên không âm; i = 1 -> n)

Vì P(1) = 0 nên: an + an - 1 + ... + a1 + ao = 0

Mà: an; an - 1; ... ; a1; ao là các số nguyên không âm nên an = an - 1 = .... = a1 = ao = 0

=> (x) = 0 => P(P(3))=0.

 ❤♚ℳℴℴทℛℴƴຮ♚❤
7 tháng 3 2020 lúc 23:26

 Vì \(P\left(x\right)=Q\left(x\right)+Q\left(1-x\right)\)

+)\(x=0\) \(​​\implies\) \(P\left(0\right)=Q\left(0\right)+Q\left(1\right)=0\) 

+)\(x=1\) \(​​\implies\)  \(P\left(1\right)=Q\left(1\right)+Q\left(0\right)\)

  \(​​\implies\) \(P\left(0\right)=P\left(1\right)=0\)

Đặt đa thức : P(x) = an  . \(x^n\)  + an - 1 \(x^{n-1}\)  + ...... + a1 . \(x^1\) +  a0

P(x) là đa thức bậc n ; có các hệ số là : an  ; an - 1; .... ; a; a

P(1) = an +  an - 1  +  ......... + a+ a= 0 

Mà a0 ; a1  ; ..... ; an - 1 ; an \(\geq\) 0

 \(​​\implies\)  a+ an - 1 + ... + a1 + a\(\geq\) 0

​​\(​​\implies\)  P(x) \(\geq\) 0

Dấu " = " xảy ra \(\iff\) a0 = a1  = ..... = an - 1 = a= 0

  P(x) = 0 với mọi x \(\in\) R

 P(3) = 0 

 P(P(3)) = P(0) = 0

Vậy P(P(3)) = 0

Khách vãng lai đã xóa